Description
Pretrained Wav2Vec2ForCTC model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.wav2vec2hindia is a English model originally trained by SAGAR4REAL.
How to use
     
audioAssembler = AudioAssembler() \
	.setInputCol("audio_content") \
	.setOutputCol("audio_assembler")
speechToText  = Wav2Vec2ForCTC.pretrained("wav2vec2hindia","en") \
     .setInputCols(["audio_assembler"]) \
     .setOutputCol("text")
pipeline = Pipeline().setStages([audioAssembler, speechToText])
pipelineModel = pipeline.fit(data)
pipelineDF = pipelineModel.transform(data)
val audioAssembler = new DocumentAssembler()
    .setInputCols("audio_content")
    .setOutputCols("audio_assembler")
val speechToText = Wav2Vec2ForCTC.pretrained("wav2vec2hindia", "en")
    .setInputCols(Array("audio_assembler")) 
    .setOutputCol("text") 
    
val pipeline = new Pipeline().setStages(Array(documentAssembler, speechToText))
val pipelineModel = pipeline.fit(data)
val pipelineDF = pipelineModel.transform(data)
Model Information
| Model Name: | wav2vec2hindia | 
| Compatibility: | Spark NLP 5.5.1+ | 
| License: | Open Source | 
| Edition: | Official | 
| Input Labels: | [audio_assembler] | 
| Output Labels: | [text] | 
| Language: | en | 
| Size: | 1.2 GB | 
References
https://huggingface.co/SAGAR4REAL/wav2vec2hindia