Description
Pretrained Wav2Vec2ForCTC model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.wav2vec2_xls_r_300m_assamese_cv8_v1
is a Assamese model originally trained by emre.
How to use
audioAssembler = AudioAssembler() \
.setInputCol("audio_content") \
.setOutputCol("audio_assembler")
speechToText = Wav2Vec2ForCTC.pretrained("wav2vec2_xls_r_300m_assamese_cv8_v1","as") \
.setInputCols(["audio_assembler"]) \
.setOutputCol("text")
pipeline = Pipeline().setStages([audioAssembler, speechToText])
pipelineModel = pipeline.fit(data)
pipelineDF = pipelineModel.transform(data)
val audioAssembler = new DocumentAssembler()
.setInputCols("audio_content")
.setOutputCols("audio_assembler")
val speechToText = Wav2Vec2ForCTC.pretrained("wav2vec2_xls_r_300m_assamese_cv8_v1", "as")
.setInputCols(Array("audio_assembler"))
.setOutputCol("text")
val pipeline = new Pipeline().setStages(Array(documentAssembler, speechToText))
val pipelineModel = pipeline.fit(data)
val pipelineDF = pipelineModel.transform(data)
Model Information
Model Name: | wav2vec2_xls_r_300m_assamese_cv8_v1 |
Compatibility: | Spark NLP 5.5.1+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [audio_assembler] |
Output Labels: | [text] |
Language: | as |
Size: | 1.2 GB |
References
https://huggingface.co/emre/wav2vec2-xls-r-300m-as-CV8-v1