Description
Pretrained MPNetEmbeddings  model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.nli_mpnet_base_v2 is a English model originally trained by sentence-transformers.
Predicted Entities
How to use
document_assembler = DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("documents")
    
    
embeddings =MPNetEmbeddings.pretrained("nli_mpnet_base_v2","en") \
            .setInputCols(["documents"]) \
            .setOutputCol("mpnet_embeddings")
pipeline = Pipeline().setStages([document_assembler, embeddings])
pipelineModel = pipeline.fit(data)
pipelineDF = pipelineModel.transform(data)
val document_assembler = new DocumentAssembler()
    .setInputCol("text") 
    .setOutputCol("documents")
    
val embeddings = MPNetEmbeddings 
    .pretrained("nli_mpnet_base_v2", "en")
    .setInputCols(Array("documents")) 
    .setOutputCol("mpnet_embeddings") 
val pipeline = new Pipeline().setStages(Array(document_assembler, embeddings))
val pipelineModel = pipeline.fit(data)
val pipelineDF = pipelineModel.transform(data)
Model Information
| Model Name: | nli_mpnet_base_v2 | 
| Compatibility: | Spark NLP 5.5.1+ | 
| License: | Open Source | 
| Edition: | Official | 
| Input Labels: | [document] | 
| Output Labels: | [mpnet] | 
| Language: | en | 
| Size: | 405.4 MB | 
References
References
https://huggingface.co/sentence-transformers/nli-mpnet-base-v2