French nermembert_base_4entities CamemBertForTokenClassification from CATIE-AQ

Description

Pretrained CamemBertForTokenClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.nermembert_base_4entities is a French model originally trained by CATIE-AQ.

Predicted Entities

Download Copy S3 URI

How to use

documentAssembler = DocumentAssembler() \
    .setInputCol('text') \
    .setOutputCol('document')
    
tokenizer = Tokenizer() \
    .setInputCols(['document']) \
    .setOutputCol('token')

tokenClassifier  = CamemBertForTokenClassification.pretrained("nermembert_base_4entities","fr") \
     .setInputCols(["documents","token"]) \
     .setOutputCol("ner")

pipeline = Pipeline().setStages([documentAssembler, tokenizer, tokenClassifier])
data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text")
pipelineModel = pipeline.fit(data)
pipelineDF = pipelineModel.transform(data)
val documentAssembler = new DocumentAssembler()
    .setInputCols("text")
    .setOutputCols("document")
    
val tokenizer = new Tokenizer()
    .setInputCols("document")
    .setOutputCol("token")

val tokenClassifier = CamemBertForTokenClassification.pretrained("nermembert_base_4entities", "fr")
    .setInputCols(Array("documents","token")) 
    .setOutputCol("ner") 
    
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, tokenClassifier))
val data = Seq("I love spark-nlp").toDS.toDF("text")
val pipelineModel = pipeline.fit(data)
val pipelineDF = pipelineModel.transform(data)

Model Information

Model Name: nermembert_base_4entities
Compatibility: Spark NLP 5.5.1+
License: Open Source
Edition: Official
Input Labels: [document, token]
Output Labels: [ner]
Language: fr
Size: 411.9 MB

References

References

https://huggingface.co/CATIE-AQ/NERmembert-base-4entities