Description
Lightweight reranker model, possesses strong multilingual capabilities, easy to deploy, with fast inference.
How to use
import sparknlp
from sparknlp.base import *
from sparknlp.annotator import *
from pyspark.ml import Pipeline
document = DocumentAssembler() \n .setInputCol("text") \n .setOutputCol("document")
reranker = AutoGGUFReranker.pretrained("bge_reranker_v2_m3_Q4_K_M") \n .setInputCols(["document"]) \n .setOutputCol("reranked_documents") \n .setBatchSize(4) \n .setQuery("A man is eating pasta.")
pipeline = Pipeline().setStages([document, reranker])
data = spark.createDataFrame([
["A man is eating food."],
["A man is eating a piece of bread."],
["The girl is carrying a baby."],
["A man is riding a horse."]
]).toDF("text")
result = pipeline.fit(data).transform(data)
result.select("reranked_documents").show(truncate = False)
# Each document will have a relevance_score in metadata showing how relevant it is to the query
Model Information
Model Name: | bge_reranker_v2_m3_Q4_K_M |
Compatibility: | Spark NLP 6.1.2+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [document] |
Output Labels: | [reranked_documents] |
Language: | en |
Size: | 416.0 MB |