c

com.johnsnowlabs.ml.tensorflow

ClassifierDatasetEncoder

class ClassifierDatasetEncoder extends Serializable

Linear Supertypes
Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. ClassifierDatasetEncoder
  2. Serializable
  3. Serializable
  4. AnyRef
  5. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new ClassifierDatasetEncoder(params: ClassifierDatasetEncoderParams)

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  5. def calculateEmbeddingsDim(dataset: DataFrame): Int
  6. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  7. def collectTrainingInstances(dataset: DataFrame, labelCol: String): Array[Array[(String, Array[Float])]]

    Converts DataFrame to Array of Arrays of Labels (string)

    Converts DataFrame to Array of Arrays of Labels (string)

    dataset

    Input DataFrame with embeddings and labels

    returns

    Array of Array of Map(String, Array(Float))

  8. def collectTrainingInstancesMultiLabel(dataset: DataFrame, labelCol: String): Array[Array[(Array[String], Array[Float])]]

    Converts DataFrame to labels and embeddings

    Converts DataFrame to labels and embeddings

    dataset

    Input DataFrame with embeddings and labels

    returns

    Array of Array of Map(Array(String), Array(Float))

  9. def decodeOutputData(tagIds: Array[Array[Float]]): Array[Array[(String, Float)]]

    Converts Tag Identifiers to Tag Names

    Converts Tag Identifiers to Tag Names

    tagIds

    Tag Ids encoded for Tensorflow Model.

    returns

    Tag names

  10. def encodeTags(labels: Array[String]): Array[Array[Int]]
  11. def encodeTagsMultiLabel(labels: Array[Array[String]]): Array[Array[Float]]
  12. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  13. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  14. def extractLabels(dataset: Array[Array[(String, Array[Float])]]): Array[String]

    Converts DataFrame to Array of Arrays of Labels (string)

    Converts DataFrame to Array of Arrays of Labels (string)

    dataset

    Input DataFrame with labels

    returns

    Array of Array of String

  15. def extractLabelsMultiLabel(dataset: Array[Array[(Array[String], Array[Float])]]): Array[Array[String]]

    Converts DataFrame to Array of Arrays of Labels (string)

    Converts DataFrame to Array of Arrays of Labels (string)

    dataset

    Input DataFrame with labels

    returns

    Array of Array of String

  16. def extractSentenceEmbeddings(docs: Seq[(Int, Seq[Annotation])]): Array[Array[Float]]

    Converts DataFrame to Array of Arrays of Embeddings

    Converts DataFrame to Array of Arrays of Embeddings

    docs

    Input DataFrame with sentence_embeddings

    returns

    Array of Array of Float

  17. def extractSentenceEmbeddings(dataset: Array[Array[(String, Array[Float])]]): Array[Array[Float]]

    Converts DataFrame to Array of Arrays of Embeddings

    Converts DataFrame to Array of Arrays of Embeddings

    dataset

    Input DataFrame with sentence_embeddings

    returns

    Array of Array of Float

  18. def extractSentenceEmbeddingsMultiLabel(docs: Seq[(Int, Seq[Annotation])]): Array[Array[Array[Float]]]

    Converts DataFrame to Array of arrays of arrays of arrays of Embeddings The difference in this function is to create a sequence in case of multiple sentences in a document Used in MultiClassifierDL

    Converts DataFrame to Array of arrays of arrays of arrays of Embeddings The difference in this function is to create a sequence in case of multiple sentences in a document Used in MultiClassifierDL

    docs

    Input DataFrame with sentence_embeddings

    returns

    Array of Arrays of Arrays of Floats

  19. def extractSentenceEmbeddingsMultiLabel(dataset: Array[Array[(Array[String], Array[Float])]]): Array[Array[Array[Float]]]

    Converts DataFrame to Array of arrays of arrays of arrays of Embeddings The difference in this function is to create a sequence in case of multiple sentences in a document Used in MultiClassifierDL

    Converts DataFrame to Array of arrays of arrays of arrays of Embeddings The difference in this function is to create a sequence in case of multiple sentences in a document Used in MultiClassifierDL

    dataset

    Input DataFrame with sentence_embeddings

    returns

    Array of Arrays of Arrays of Floats

  20. def extractSentenceEmbeddingsMultiLabelPredict(docs: Seq[(Int, Seq[Annotation])]): Array[Array[Array[Float]]]
  21. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  22. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  23. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  24. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  25. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  26. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  27. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  28. val params: ClassifierDatasetEncoderParams
  29. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  30. val tags: Array[String]
  31. val tags2Id: Map[String, Int]
  32. def toString(): String
    Definition Classes
    AnyRef → Any
  33. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  34. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  35. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped