com.johnsnowlabs.nlp.annotators.cv
CLIPForZeroShotClassification 
            Companion object CLIPForZeroShotClassification
          
      class CLIPForZeroShotClassification extends AnnotatorModel[CLIPForZeroShotClassification] with HasBatchedAnnotateImage[CLIPForZeroShotClassification] with HasImageFeatureProperties with WriteTensorflowModel with WriteOnnxModel with WriteOpenvinoModel with HasEngine with HasRescaleFactor
Zero Shot Image Classifier based on CLIP.
CLIP (Contrastive Language-Image Pre-Training) is a neural network that was trained on image and text pairs. It has the ability to predict images without training on any hard-coded labels. This makes it very flexible, as labels can be provided during inference. This is similar to the zero-shot capabilities of the GPT-2 and 3 models.
Pretrained models can be loaded with pretrained of the companion object:
val imageClassifier = CLIPForZeroShotClassification.pretrained() .setInputCols("image_assembler") .setOutputCol("label")
The default model is "zero_shot_classifier_clip_vit_base_patch32", if no name is provided.
For available pretrained models please see the Models Hub.
Models from the HuggingFace 🤗 Transformers library are also compatible with Spark NLP 🚀. To see which models are compatible and how to import them see https://github.com/JohnSnowLabs/spark-nlp/discussions/5669 and to see more extended examples, see CLIPForZeroShotClassificationTestSpec.
Example
import com.johnsnowlabs.nlp.ImageAssembler import com.johnsnowlabs.nlp.annotator._ import org.apache.spark.ml.Pipeline val imageDF = ResourceHelper.spark.read .format("image") .option("dropInvalid", value = true) .load("src/test/resources/image/") val imageAssembler: ImageAssembler = new ImageAssembler() .setInputCol("image") .setOutputCol("image_assembler") val candidateLabels = Array( "a photo of a bird", "a photo of a cat", "a photo of a dog", "a photo of a hen", "a photo of a hippo", "a photo of a room", "a photo of a tractor", "a photo of an ostrich", "a photo of an ox") val imageClassifier = CLIPForZeroShotClassification .pretrained() .setInputCols("image_assembler") .setOutputCol("label") .setCandidateLabels(candidateLabels) val pipeline = new Pipeline().setStages(Array(imageAssembler, imageClassifier)).fit(imageDF).transform(imageDF) pipeline .selectExpr("reverse(split(image.origin, '/'))[0] as image_name", "label.result") .show(truncate = false) +-----------------+-----------------------+ |image_name |result | +-----------------+-----------------------+ |palace.JPEG |[a photo of a room] | |egyptian_cat.jpeg|[a photo of a cat] | |hippopotamus.JPEG|[a photo of a hippo] | |hen.JPEG |[a photo of a hen] | |ostrich.JPEG |[a photo of an ostrich]| |junco.JPEG |[a photo of a bird] | |bluetick.jpg |[a photo of a dog] | |chihuahua.jpg |[a photo of a dog] | |tractor.JPEG |[a photo of a tractor] | |ox.JPEG |[a photo of an ox] | +-----------------+-----------------------+
- Grouped
- Alphabetic
- By Inheritance
- CLIPForZeroShotClassification
- HasRescaleFactor
- HasEngine
- WriteOpenvinoModel
- WriteOnnxModel
- WriteTensorflowModel
- HasImageFeatureProperties
- HasBatchedAnnotateImage
- AnnotatorModel
- CanBeLazy
- RawAnnotator
- HasOutputAnnotationCol
- HasInputAnnotationCols
- HasOutputAnnotatorType
- ParamsAndFeaturesWritable
- HasFeatures
- DefaultParamsWritable
- MLWritable
- Model
- Transformer
- PipelineStage
- Logging
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
Type Members
- 
      
      
      
        
      
    
      
        
        type
      
      
        AnnotationContent = Seq[Row]
      
      
      internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI - Attributes
- protected
- Definition Classes
- AnnotatorModel
 
- 
      
      
      
        
      
    
      
        
        type
      
      
        AnnotatorType = String
      
      
      - Definition Classes
- HasOutputAnnotatorType
 
Value Members
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        !=(arg0: Any): Boolean
      
      
      - Definition Classes
- AnyRef → Any
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        ##(): Int
      
      
      - Definition Classes
- AnyRef → Any
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        $[T](param: Param[T]): T
      
      
      - Attributes
- protected
- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        $$[T](feature: StructFeature[T]): T
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        $$[K, V](feature: MapFeature[K, V]): Map[K, V]
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        $$[T](feature: SetFeature[T]): Set[T]
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        $$[T](feature: ArrayFeature[T]): Array[T]
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        ==(arg0: Any): Boolean
      
      
      - Definition Classes
- AnyRef → Any
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        _transform(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): DataFrame
      
      
      - Attributes
- protected
- Definition Classes
- AnnotatorModel
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        afterAnnotate(dataset: DataFrame): DataFrame
      
      
      - Attributes
- protected
- Definition Classes
- AnnotatorModel
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        asInstanceOf[T0]: T0
      
      
      - Definition Classes
- Any
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        batchAnnotate(batchedAnnotations: Seq[Array[AnnotationImage]]): Seq[Seq[Annotation]]
      
      
      Takes a document and annotations and produces new annotations of this annotator's annotation type Takes a document and annotations and produces new annotations of this annotator's annotation type - batchedAnnotations
- Annotations that correspond to inputAnnotationCols generated by previous annotators if any 
- returns
- any number of annotations processed for every input annotation. Not necessary one to one relationship 
 - Definition Classes
- CLIPForZeroShotClassification → HasBatchedAnnotateImage
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        batchProcess(rows: Iterator[_]): Iterator[Row]
      
      
      - Definition Classes
- HasBatchedAnnotateImage
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        batchSize: IntParam
      
      
      Size of every batch (Default depends on model). Size of every batch (Default depends on model). - Definition Classes
- HasBatchedAnnotateImage
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        beforeAnnotate(dataset: Dataset[_]): Dataset[_]
      
      
      - Attributes
- protected
- Definition Classes
- AnnotatorModel
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        candidateLabels: StringArrayParam
      
      
      Candidate labels for classification, you can set candidateLabels dynamically during the runtime 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
      
      
      - Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        clear(param: Param[_]): CLIPForZeroShotClassification.this.type
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        clone(): AnyRef
      
      
      - Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        copy(extra: ParamMap): CLIPForZeroShotClassification
      
      
      requirement for annotators copies requirement for annotators copies - Definition Classes
- RawAnnotator → Model → Transformer → PipelineStage → Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        copyValues[T <: Params](to: T, extra: ParamMap): T
      
      
      - Attributes
- protected
- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        defaultCopy[T <: Params](extra: ParamMap): T
      
      
      - Attributes
- protected
- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        doNormalize: BooleanParam
      
      
      Whether or not to normalize the input with mean and standard deviation Whether or not to normalize the input with mean and standard deviation - Definition Classes
- HasImageFeatureProperties
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        doRescale: BooleanParam
      
      
      Whether to rescale the image values by rescaleFactor. Whether to rescale the image values by rescaleFactor. - Definition Classes
- HasRescaleFactor
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        doResize: BooleanParam
      
      
      Whether to resize the input to a certain size Whether to resize the input to a certain size - Definition Classes
- HasImageFeatureProperties
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        engine: Param[String]
      
      
      This param is set internally once via loadSavedModel. This param is set internally once via loadSavedModel. That's why there is no setter - Definition Classes
- HasEngine
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        eq(arg0: AnyRef): Boolean
      
      
      - Definition Classes
- AnyRef
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        equals(arg0: Any): Boolean
      
      
      - Definition Classes
- AnyRef → Any
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        explainParam(param: Param[_]): String
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        explainParams(): String
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        extraValidate(structType: StructType): Boolean
      
      
      - Attributes
- protected
- Definition Classes
- RawAnnotator
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        extraValidateMsg: String
      
      
      Override for additional custom schema checks Override for additional custom schema checks - Attributes
- protected
- Definition Classes
- RawAnnotator
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        extractParamMap(): ParamMap
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        extractParamMap(extra: ParamMap): ParamMap
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        featureExtractorType: Param[String]
      
      
      Name of model's architecture for feature extraction Name of model's architecture for feature extraction - Definition Classes
- HasImageFeatureProperties
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        features: ArrayBuffer[Feature[_, _, _]]
      
      
      - Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        finalize(): Unit
      
      
      - Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        get[T](feature: StructFeature[T]): Option[T]
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        get[K, V](feature: MapFeature[K, V]): Option[Map[K, V]]
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        get[T](feature: SetFeature[T]): Option[Set[T]]
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        get[T](feature: ArrayFeature[T]): Option[Array[T]]
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        get[T](param: Param[T]): Option[T]
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getBatchSize: Int
      
      
      Size of every batch. Size of every batch. - Definition Classes
- HasBatchedAnnotateImage
 
-  def getCandidateLabels: Array[String]
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        getClass(): Class[_]
      
      
      - Definition Classes
- AnyRef → Any
- Annotations
- @native()
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        getDefault[T](param: Param[T]): Option[T]
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getDoNormalize: Boolean
      
      
      - Definition Classes
- HasImageFeatureProperties
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getDoRescale: Boolean
      
      
      - Definition Classes
- HasRescaleFactor
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getDoResize: Boolean
      
      
      - Definition Classes
- HasImageFeatureProperties
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getEngine: String
      
      
      - Definition Classes
- HasEngine
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getFeatureExtractorType: String
      
      
      - Definition Classes
- HasImageFeatureProperties
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getImageMean: Array[Double]
      
      
      - Definition Classes
- HasImageFeatureProperties
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getImageStd: Array[Double]
      
      
      - Definition Classes
- HasImageFeatureProperties
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getInputCols: Array[String]
      
      
      - returns
- input annotations columns currently used 
 - Definition Classes
- HasInputAnnotationCols
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getLazyAnnotator: Boolean
      
      
      - Definition Classes
- CanBeLazy
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getMerges: Map[(String, String), Int]
      
      
      - Attributes
- protected[nlp]
 
-  def getModelIfNotSet: CLIP
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        getOrDefault[T](param: Param[T]): T
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        getOutputCol: String
      
      
      Gets annotation column name going to generate Gets annotation column name going to generate - Definition Classes
- HasOutputAnnotationCol
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getParam(paramName: String): Param[Any]
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getResample: Int
      
      
      - Definition Classes
- HasImageFeatureProperties
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getRescaleFactor: Double
      
      
      - Definition Classes
- HasRescaleFactor
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getSize: Int
      
      
      - Definition Classes
- HasImageFeatureProperties
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getVocabulary: Map[String, Int]
      
      
      - Attributes
- protected[nlp]
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        hasDefault[T](param: Param[T]): Boolean
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        hasParam(paramName: String): Boolean
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        hasParent: Boolean
      
      
      - Definition Classes
- Model
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        hashCode(): Int
      
      
      - Definition Classes
- AnyRef → Any
- Annotations
- @native()
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        imageMean: DoubleArrayParam
      
      
      The sequence of means for each channel, to be used when normalizing images The sequence of means for each channel, to be used when normalizing images - Definition Classes
- HasImageFeatureProperties
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        imageStd: DoubleArrayParam
      
      
      The sequence of standard deviations for each channel, to be used when normalizing images The sequence of standard deviations for each channel, to be used when normalizing images - Definition Classes
- HasImageFeatureProperties
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        initializeLogIfNecessary(isInterpreter: Boolean): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        inputAnnotatorTypes: Array[AnnotatorType]
      
      
      Input annotator type : IMAGE Input annotator type : IMAGE - Definition Classes
- CLIPForZeroShotClassification → HasInputAnnotationCols
 
- 
      
      
      
        
      
    
      
        final 
        val
      
      
        inputCols: StringArrayParam
      
      
      columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified - Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        isDefined(param: Param[_]): Boolean
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        isInstanceOf[T0]: Boolean
      
      
      - Definition Classes
- Any
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        isSet(param: Param[_]): Boolean
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        isTraceEnabled(): Boolean
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        lazyAnnotator: BooleanParam
      
      
      - Definition Classes
- CanBeLazy
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        log: Logger
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logDebug(msg: ⇒ String, throwable: Throwable): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logDebug(msg: ⇒ String): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logError(msg: ⇒ String, throwable: Throwable): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logError(msg: ⇒ String): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logInfo(msg: ⇒ String, throwable: Throwable): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logInfo(msg: ⇒ String): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logName: String
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logTrace(msg: ⇒ String, throwable: Throwable): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logTrace(msg: ⇒ String): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logWarning(msg: ⇒ String, throwable: Throwable): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logWarning(msg: ⇒ String): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        merges: MapFeature[(String, String), Int]
      
      
      Holding merges.txt for BPE Tokenization Holding merges.txt for BPE Tokenization - Attributes
- protected[nlp]
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        msgHelper(schema: StructType): String
      
      
      - Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        ne(arg0: AnyRef): Boolean
      
      
      - Definition Classes
- AnyRef
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        notify(): Unit
      
      
      - Definition Classes
- AnyRef
- Annotations
- @native()
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        notifyAll(): Unit
      
      
      - Definition Classes
- AnyRef
- Annotations
- @native()
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        onWrite(path: String, spark: SparkSession): Unit
      
      
      - Definition Classes
- CLIPForZeroShotClassification → ParamsAndFeaturesWritable
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        optionalInputAnnotatorTypes: Array[String]
      
      
      - Definition Classes
- HasInputAnnotationCols
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        outputAnnotatorType: AnnotatorType
      
      
      Output annotator type : CATEGORY Output annotator type : CATEGORY - Definition Classes
- CLIPForZeroShotClassification → HasOutputAnnotatorType
 
- 
      
      
      
        
      
    
      
        final 
        val
      
      
        outputCol: Param[String]
      
      
      - Attributes
- protected
- Definition Classes
- HasOutputAnnotationCol
 
- 
      
      
      
        
      
    
      
        
        lazy val
      
      
        params: Array[Param[_]]
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        var
      
      
        parent: Estimator[CLIPForZeroShotClassification]
      
      
      - Definition Classes
- Model
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        resample: IntParam
      
      
      An optional resampling filter. An optional resampling filter. This can be one of PIL.Image.NEAREST, PIL.Image.BOX, PIL.Image.BILINEAR, PIL.Image.HAMMING, PIL.Image.BICUBIC or PIL.Image.LANCZOS. Only has an effect if do_resize is set to True - Definition Classes
- HasImageFeatureProperties
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        rescaleFactor: DoubleParam
      
      
      Factor to scale the image values (Default: 1 / 255.0).Factor to scale the image values (Default: 1 / 255.0).- Definition Classes
- HasRescaleFactor
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        save(path: String): Unit
      
      
      - Definition Classes
- MLWritable
- Annotations
- @Since( "1.6.0" ) @throws( ... )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        set[T](feature: StructFeature[T], value: T): CLIPForZeroShotClassification.this.type
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        set[K, V](feature: MapFeature[K, V], value: Map[K, V]): CLIPForZeroShotClassification.this.type
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        set[T](feature: SetFeature[T], value: Set[T]): CLIPForZeroShotClassification.this.type
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        set[T](feature: ArrayFeature[T], value: Array[T]): CLIPForZeroShotClassification.this.type
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        set(paramPair: ParamPair[_]): CLIPForZeroShotClassification.this.type
      
      
      - Attributes
- protected
- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        set(param: String, value: Any): CLIPForZeroShotClassification.this.type
      
      
      - Attributes
- protected
- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        set[T](param: Param[T], value: T): CLIPForZeroShotClassification.this.type
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setBatchSize(size: Int): CLIPForZeroShotClassification.this.type
      
      
      Size of every batch. Size of every batch. - Definition Classes
- HasBatchedAnnotateImage
 
-  def setCandidateLabels(value: Array[String]): CLIPForZeroShotClassification.this.type
- 
      
      
      
        
      
    
      
        
        def
      
      
        setDefault[T](feature: StructFeature[T], value: () ⇒ T): CLIPForZeroShotClassification.this.type
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setDefault[K, V](feature: MapFeature[K, V], value: () ⇒ Map[K, V]): CLIPForZeroShotClassification.this.type
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setDefault[T](feature: SetFeature[T], value: () ⇒ Set[T]): CLIPForZeroShotClassification.this.type
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setDefault[T](feature: ArrayFeature[T], value: () ⇒ Array[T]): CLIPForZeroShotClassification.this.type
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        setDefault(paramPairs: ParamPair[_]*): CLIPForZeroShotClassification.this.type
      
      
      - Attributes
- protected
- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        setDefault[T](param: Param[T], value: T): CLIPForZeroShotClassification.this.type
      
      
      - Attributes
- protected[org.apache.spark.ml]
- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setDoNormalize(value: Boolean): CLIPForZeroShotClassification.this.type
      
      
      - Definition Classes
- HasImageFeatureProperties
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setDoRescale(value: Boolean): CLIPForZeroShotClassification.this.type
      
      
      - Definition Classes
- HasRescaleFactor
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setDoResize(value: Boolean): CLIPForZeroShotClassification.this.type
      
      
      - Definition Classes
- HasImageFeatureProperties
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setFeatureExtractorType(value: String): CLIPForZeroShotClassification.this.type
      
      
      - Definition Classes
- HasImageFeatureProperties
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setImageMean(value: Array[Double]): CLIPForZeroShotClassification.this.type
      
      
      - Definition Classes
- HasImageFeatureProperties
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setImageStd(value: Array[Double]): CLIPForZeroShotClassification.this.type
      
      
      - Definition Classes
- HasImageFeatureProperties
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        setInputCols(value: String*): CLIPForZeroShotClassification.this.type
      
      
      - Definition Classes
- HasInputAnnotationCols
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setInputCols(value: Array[String]): CLIPForZeroShotClassification.this.type
      
      
      Overrides required annotators column if different than default Overrides required annotators column if different than default - Definition Classes
- HasInputAnnotationCols
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setLazyAnnotator(value: Boolean): CLIPForZeroShotClassification.this.type
      
      
      - Definition Classes
- CanBeLazy
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setMerges(value: Map[(String, String), Int]): CLIPForZeroShotClassification.this.type
      
      
      - Attributes
- protected[nlp]
 
-  def setModelIfNotSet(spark: SparkSession, tensorflow: Option[TensorflowWrapper], onnx: Option[OnnxWrapper], openvinoWrapper: Option[OpenvinoWrapper], preprocessor: Preprocessor): CLIPForZeroShotClassification.this.type
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        setOutputCol(value: String): CLIPForZeroShotClassification.this.type
      
      
      Overrides annotation column name when transforming Overrides annotation column name when transforming - Definition Classes
- HasOutputAnnotationCol
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setParent(parent: Estimator[CLIPForZeroShotClassification]): CLIPForZeroShotClassification
      
      
      - Definition Classes
- Model
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setResample(value: Int): CLIPForZeroShotClassification.this.type
      
      
      - Definition Classes
- HasImageFeatureProperties
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setRescaleFactor(value: Double): CLIPForZeroShotClassification.this.type
      
      
      - Definition Classes
- HasRescaleFactor
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setSize(value: Int): CLIPForZeroShotClassification.this.type
      
      
      - Definition Classes
- HasImageFeatureProperties
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setVocabulary(value: Map[String, Int]): CLIPForZeroShotClassification.this.type
      
      
      - Attributes
- protected[nlp]
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        size: IntParam
      
      
      Resize the input to the given size. Resize the input to the given size. If a tuple is provided, it should be (width, height). If only an integer is provided, then the input will be resized to (size, size). Only has an effect if do_resize is set to True. - Definition Classes
- HasImageFeatureProperties
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        synchronized[T0](arg0: ⇒ T0): T0
      
      
      - Definition Classes
- AnyRef
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        toString(): String
      
      
      - Definition Classes
- Identifiable → AnyRef → Any
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        transform(dataset: Dataset[_]): DataFrame
      
      
      Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content - dataset
- Dataset[Row] 
 - Definition Classes
- AnnotatorModel → Transformer
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
      
      
      - Definition Classes
- Transformer
- Annotations
- @Since( "2.0.0" )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
      
      
      - Definition Classes
- Transformer
- Annotations
- @Since( "2.0.0" ) @varargs()
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        transformSchema(schema: StructType): StructType
      
      
      requirement for pipeline transformation validation. requirement for pipeline transformation validation. It is called on fit() - Definition Classes
- RawAnnotator → PipelineStage
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        transformSchema(schema: StructType, logging: Boolean): StructType
      
      
      - Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        uid: String
      
      
      - Definition Classes
- CLIPForZeroShotClassification → Identifiable
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        validate(schema: StructType): Boolean
      
      
      takes a Dataset and checks to see if all the required annotation types are present. takes a Dataset and checks to see if all the required annotation types are present. - schema
- to be validated 
- returns
- True if all the required types are present, else false 
 - Attributes
- protected
- Definition Classes
- RawAnnotator
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        vocabulary: MapFeature[String, Int]
      
      
      Vocabulary used to encode the words to ids with bpeTokenizer.encode Vocabulary used to encode the words to ids with bpeTokenizer.encode - Attributes
- protected[nlp]
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(): Unit
      
      
      - Definition Classes
- AnyRef
- Annotations
- @throws( ... )
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long, arg1: Int): Unit
      
      
      - Definition Classes
- AnyRef
- Annotations
- @throws( ... )
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long): Unit
      
      
      - Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        wrapColumnMetadata(col: Column): Column
      
      
      - Attributes
- protected
- Definition Classes
- RawAnnotator
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        write: MLWriter
      
      
      - Definition Classes
- ParamsAndFeaturesWritable → DefaultParamsWritable → MLWritable
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        writeOnnxModel(path: String, spark: SparkSession, onnxWrapper: OnnxWrapper, suffix: String, fileName: String): Unit
      
      
      - Definition Classes
- WriteOnnxModel
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        writeOnnxModels(path: String, spark: SparkSession, onnxWrappersWithNames: Seq[(OnnxWrapper, String)], suffix: String): Unit
      
      
      - Definition Classes
- WriteOnnxModel
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        writeOpenvinoModel(path: String, spark: SparkSession, openvinoWrapper: OpenvinoWrapper, suffix: String, fileName: String): Unit
      
      
      - Definition Classes
- WriteOpenvinoModel
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        writeOpenvinoModels(path: String, spark: SparkSession, ovWrappersWithNames: Seq[(OpenvinoWrapper, String)], suffix: String): Unit
      
      
      - Definition Classes
- WriteOpenvinoModel
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        writeTensorflowHub(path: String, tfPath: String, spark: SparkSession, suffix: String = "_use"): Unit
      
      
      - Definition Classes
- WriteTensorflowModel
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        writeTensorflowModel(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]] = None): Unit
      
      
      - Definition Classes
- WriteTensorflowModel
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        writeTensorflowModelV2(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]] = None, savedSignatures: Option[Map[String, String]] = None): Unit
      
      
      - Definition Classes
- WriteTensorflowModel
 
Inherited from HasRescaleFactor
Inherited from HasEngine
Inherited from WriteOpenvinoModel
Inherited from WriteOnnxModel
Inherited from WriteTensorflowModel
Inherited from HasImageFeatureProperties
Inherited from HasBatchedAnnotateImage[CLIPForZeroShotClassification]
Inherited from AnnotatorModel[CLIPForZeroShotClassification]
Inherited from CanBeLazy
Inherited from RawAnnotator[CLIPForZeroShotClassification]
Inherited from HasOutputAnnotationCol
Inherited from HasInputAnnotationCols
Inherited from HasOutputAnnotatorType
Inherited from ParamsAndFeaturesWritable
Inherited from HasFeatures
Inherited from DefaultParamsWritable
Inherited from MLWritable
Inherited from Model[CLIPForZeroShotClassification]
Inherited from Transformer
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.
Annotator types
Required input and expected output annotator types