com.johnsnowlabs.nlp.annotators.cv
ConvNextForImageClassification
Companion object ConvNextForImageClassification
class ConvNextForImageClassification extends SwinForImageClassification
ConvNextForImageClassification is an image classifier based on ConvNet models.
The ConvNeXT model was proposed in A ConvNet for the 2020s by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie. ConvNeXT is a pure convolutional model (ConvNet), inspired by the design of Vision Transformers, that claims to outperform them.
Pretrained models can be loaded with pretrained
of the companion object:
val imageClassifier = ConvNextForImageClassification.pretrained() .setInputCols("image_assembler") .setOutputCol("class")
The default model is "image_classifier_convnext_tiny_224_local"
, if no name is provided.
For available pretrained models please see the Models Hub.
Models from the HuggingFace 🤗 Transformers library are also compatible with Spark NLP 🚀. To see which models are compatible and how to import them see https://github.com/JohnSnowLabs/spark-nlp/discussions/5669 and to see more extended examples, see ConvNextForImageClassificationTestSpec.
References:
Paper Abstract:
The "Roaring 20s" of visual recognition began with the introduction of Vision Transformers (ViTs), which quickly superseded ConvNets as the state-of-the-art image classification model. A vanilla ViT, on the other hand, faces difficulties when applied to general computer vision tasks such as object detection and semantic segmentation. It is the hierarchical Transformers (e.g., Swin Transformers) that reintroduced several ConvNet priors, making Transformers practically viable as a generic vision backbone and demonstrating remarkable performance on a wide variety of vision tasks. However, the effectiveness of such hybrid approaches is still largely credited to the intrinsic superiority of Transformers, rather than the inherent inductive biases of convolutions. In this work, we reexamine the design spaces and test the limits of what a pure ConvNet can achieve. We gradually "modernize" a standard ResNet toward the design of a vision Transformer, and discover several key components that contribute to the performance difference along the way. The outcome of this exploration is a family of pure ConvNet models dubbed ConvNeXt. Constructed entirely from standard ConvNet modules, ConvNeXts compete favorably with Transformers in terms of accuracy and scalability, achieving 87.8% ImageNet top-1 accuracy and outperforming Swin Transformers on COCO detection and ADE20K segmentation, while maintaining the simplicity and efficiency of standard ConvNets.
Example
import com.johnsnowlabs.nlp.annotator._ import com.johnsnowlabs.nlp.ImageAssembler import org.apache.spark.ml.Pipeline val imageDF: DataFrame = spark.read .format("image") .option("dropInvalid", value = true) .load("src/test/resources/image/") val imageAssembler = new ImageAssembler() .setInputCol("image") .setOutputCol("image_assembler") val imageClassifier = ConvNextForImageClassification .pretrained() .setInputCols("image_assembler") .setOutputCol("class") val pipeline = new Pipeline().setStages(Array(imageAssembler, imageClassifier)) val pipelineDF = pipeline.fit(imageDF).transform(imageDF) pipelineDF .selectExpr("reverse(split(image.origin, '/'))[0] as image_name", "class.result") .show(truncate = false) +-----------------+----------------------------------------------------------+ |image_name |result | +-----------------+----------------------------------------------------------+ |palace.JPEG |[palace] | |egyptian_cat.jpeg|[tabby, tabby cat] | |hippopotamus.JPEG|[hippopotamus, hippo, river horse, Hippopotamus amphibius]| |hen.JPEG |[hen] | |ostrich.JPEG |[ostrich, Struthio camelus] | |junco.JPEG |[junco, snowbird] | |bluetick.jpg |[bluetick] | |chihuahua.jpg |[Chihuahua] | |tractor.JPEG |[tractor] | |ox.JPEG |[ox] | +-----------------+----------------------------------------------------------+
- Grouped
- Alphabetic
- By Inheritance
- ConvNextForImageClassification
- SwinForImageClassification
- HasRescaleFactor
- ViTForImageClassification
- HasEngine
- WriteTensorflowModel
- HasImageFeatureProperties
- HasBatchedAnnotateImage
- AnnotatorModel
- CanBeLazy
- RawAnnotator
- HasOutputAnnotationCol
- HasInputAnnotationCols
- HasOutputAnnotatorType
- ParamsAndFeaturesWritable
- HasFeatures
- DefaultParamsWritable
- MLWritable
- Model
- Transformer
- PipelineStage
- Logging
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
Type Members
-
type
AnnotationContent = Seq[Row]
internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI
internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI
- Attributes
- protected
- Definition Classes
- AnnotatorModel
-
type
AnnotatorType = String
- Definition Classes
- HasOutputAnnotatorType
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
$[T](param: Param[T]): T
- Attributes
- protected
- Definition Classes
- Params
-
def
$$[T](feature: StructFeature[T]): T
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
$$[K, V](feature: MapFeature[K, V]): Map[K, V]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
$$[T](feature: SetFeature[T]): Set[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
$$[T](feature: ArrayFeature[T]): Array[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
_transform(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): DataFrame
- Attributes
- protected
- Definition Classes
- AnnotatorModel
-
def
afterAnnotate(dataset: DataFrame): DataFrame
- Attributes
- protected
- Definition Classes
- AnnotatorModel
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
batchAnnotate(batchedAnnotations: Seq[Array[AnnotationImage]]): Seq[Seq[Annotation]]
Takes a document and annotations and produces new annotations of this annotator's annotation type
Takes a document and annotations and produces new annotations of this annotator's annotation type
- batchedAnnotations
Annotations that correspond to inputAnnotationCols generated by previous annotators if any
- returns
any number of annotations processed for every input annotation. Not necessary one to one relationship
- Definition Classes
- ConvNextForImageClassification → SwinForImageClassification → ViTForImageClassification → HasBatchedAnnotateImage
-
def
batchProcess(rows: Iterator[_]): Iterator[Row]
- Definition Classes
- HasBatchedAnnotateImage
-
val
batchSize: IntParam
Size of every batch (Default depends on model).
Size of every batch (Default depends on model).
- Definition Classes
- HasBatchedAnnotateImage
-
def
beforeAnnotate(dataset: Dataset[_]): Dataset[_]
- Attributes
- protected
- Definition Classes
- AnnotatorModel
-
final
def
checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
final
def
clear(param: Param[_]): ConvNextForImageClassification.this.type
- Definition Classes
- Params
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
val
configProtoBytes: IntArrayParam
ConfigProto from tensorflow, serialized into byte array.
ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()
- Definition Classes
- ViTForImageClassification
-
def
copy(extra: ParamMap): ViTForImageClassification
requirement for annotators copies
requirement for annotators copies
- Definition Classes
- RawAnnotator → Model → Transformer → PipelineStage → Params
-
def
copyValues[T <: Params](to: T, extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
val
cropPct: DoubleParam
Determines rescale and crop percentage for images smaller than the configured size (Default:
224 / 256d
).Determines rescale and crop percentage for images smaller than the configured size (Default:
224 / 256d
).If the image size is smaller than the specified size, the smaller edge of the image will be matched to
int(size / cropPct)
. Afterwards the image is cropped to(size, size)
. -
final
def
defaultCopy[T <: Params](extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
val
doNormalize: BooleanParam
Whether or not to normalize the input with mean and standard deviation
Whether or not to normalize the input with mean and standard deviation
- Definition Classes
- HasImageFeatureProperties
-
val
doRescale: BooleanParam
Whether to rescale the image values by rescaleFactor.
Whether to rescale the image values by rescaleFactor.
- Definition Classes
- HasRescaleFactor
-
val
doResize: BooleanParam
Whether to resize the input to a certain size
Whether to resize the input to a certain size
- Definition Classes
- HasImageFeatureProperties
-
val
engine: Param[String]
This param is set internally once via loadSavedModel.
This param is set internally once via loadSavedModel. That's why there is no setter
- Definition Classes
- HasEngine
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
explainParam(param: Param[_]): String
- Definition Classes
- Params
-
def
explainParams(): String
- Definition Classes
- Params
-
def
extraValidate(structType: StructType): Boolean
- Attributes
- protected
- Definition Classes
- RawAnnotator
-
def
extraValidateMsg: String
Override for additional custom schema checks
Override for additional custom schema checks
- Attributes
- protected
- Definition Classes
- RawAnnotator
-
final
def
extractParamMap(): ParamMap
- Definition Classes
- Params
-
final
def
extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
-
val
featureExtractorType: Param[String]
Name of model's architecture for feature extraction
Name of model's architecture for feature extraction
- Definition Classes
- HasImageFeatureProperties
-
val
features: ArrayBuffer[Feature[_, _, _]]
- Definition Classes
- HasFeatures
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
def
get[T](feature: StructFeature[T]): Option[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
get[K, V](feature: MapFeature[K, V]): Option[Map[K, V]]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
get[T](feature: SetFeature[T]): Option[Set[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
get[T](feature: ArrayFeature[T]): Option[Array[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
def
getBatchSize: Int
Size of every batch.
Size of every batch.
- Definition Classes
- HasBatchedAnnotateImage
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
getClasses: Array[String]
Returns labels used to train this model
Returns labels used to train this model
- Definition Classes
- ViTForImageClassification
-
def
getConfigProtoBytes: Option[Array[Byte]]
ConfigProto from tensorflow, serialized into byte array.
ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()
- Definition Classes
- ViTForImageClassification
- def getCropPct: Double
-
final
def
getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
def
getDoNormalize: Boolean
- Definition Classes
- HasImageFeatureProperties
-
def
getDoRescale: Boolean
- Definition Classes
- HasRescaleFactor
-
def
getDoResize: Boolean
- Definition Classes
- HasImageFeatureProperties
-
def
getEngine: String
- Definition Classes
- HasEngine
-
def
getFeatureExtractorType: String
- Definition Classes
- HasImageFeatureProperties
-
def
getImageMean: Array[Double]
- Definition Classes
- HasImageFeatureProperties
-
def
getImageStd: Array[Double]
- Definition Classes
- HasImageFeatureProperties
-
def
getInputCols: Array[String]
- returns
input annotations columns currently used
- Definition Classes
- HasInputAnnotationCols
-
def
getLazyAnnotator: Boolean
- Definition Classes
- CanBeLazy
-
def
getModelIfNotSet: ConvNextClassifier
- Definition Classes
- ConvNextForImageClassification → ViTForImageClassification
-
final
def
getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
-
final
def
getOutputCol: String
Gets annotation column name going to generate
Gets annotation column name going to generate
- Definition Classes
- HasOutputAnnotationCol
-
def
getParam(paramName: String): Param[Any]
- Definition Classes
- Params
-
def
getResample: Int
- Definition Classes
- HasImageFeatureProperties
-
def
getRescaleFactor: Double
- Definition Classes
- HasRescaleFactor
-
def
getSignatures: Option[Map[String, String]]
- Definition Classes
- ViTForImageClassification
-
def
getSize: Int
- Definition Classes
- HasImageFeatureProperties
-
final
def
hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
-
def
hasParam(paramName: String): Boolean
- Definition Classes
- Params
-
def
hasParent: Boolean
- Definition Classes
- Model
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
val
imageMean: DoubleArrayParam
The sequence of means for each channel, to be used when normalizing images
The sequence of means for each channel, to be used when normalizing images
- Definition Classes
- HasImageFeatureProperties
-
val
imageStd: DoubleArrayParam
The sequence of standard deviations for each channel, to be used when normalizing images
The sequence of standard deviations for each channel, to be used when normalizing images
- Definition Classes
- HasImageFeatureProperties
-
def
initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
def
initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
val
inputAnnotatorTypes: Array[AnnotatorType]
Input annotator type : IMAGE
Input annotator type : IMAGE
- Definition Classes
- ViTForImageClassification → HasInputAnnotationCols
-
final
val
inputCols: StringArrayParam
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
final
def
isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
isSet(param: Param[_]): Boolean
- Definition Classes
- Params
-
def
isTraceEnabled(): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
val
labels: MapFeature[String, BigInt]
Labels used to decode predicted IDs back to string tags
Labels used to decode predicted IDs back to string tags
- Definition Classes
- ViTForImageClassification
-
val
lazyAnnotator: BooleanParam
- Definition Classes
- CanBeLazy
-
def
log: Logger
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logName: String
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
msgHelper(schema: StructType): String
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
onWrite(path: String, spark: SparkSession): Unit
- Definition Classes
- ConvNextForImageClassification → SwinForImageClassification → ViTForImageClassification → ParamsAndFeaturesWritable
-
val
optionalInputAnnotatorTypes: Array[String]
- Definition Classes
- HasInputAnnotationCols
-
val
outputAnnotatorType: AnnotatorType
Output annotator type : CATEGORY
Output annotator type : CATEGORY
- Definition Classes
- ViTForImageClassification → HasOutputAnnotatorType
-
final
val
outputCol: Param[String]
- Attributes
- protected
- Definition Classes
- HasOutputAnnotationCol
-
lazy val
params: Array[Param[_]]
- Definition Classes
- Params
-
var
parent: Estimator[ViTForImageClassification]
- Definition Classes
- Model
-
val
resample: IntParam
An optional resampling filter.
An optional resampling filter. This can be one of PIL.Image.NEAREST, PIL.Image.BOX, PIL.Image.BILINEAR, PIL.Image.HAMMING, PIL.Image.BICUBIC or PIL.Image.LANCZOS. Only has an effect if do_resize is set to True
- Definition Classes
- HasImageFeatureProperties
-
val
rescaleFactor: DoubleParam
Factor to scale the image values (Default:
1 / 255.0
).Factor to scale the image values (Default:
1 / 255.0
).- Definition Classes
- HasRescaleFactor
-
def
save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @Since( "1.6.0" ) @throws( ... )
-
def
set[T](feature: StructFeature[T], value: T): ConvNextForImageClassification.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
set[K, V](feature: MapFeature[K, V], value: Map[K, V]): ConvNextForImageClassification.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
set[T](feature: SetFeature[T], value: Set[T]): ConvNextForImageClassification.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
set[T](feature: ArrayFeature[T], value: Array[T]): ConvNextForImageClassification.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
set(paramPair: ParamPair[_]): ConvNextForImageClassification.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set(param: String, value: Any): ConvNextForImageClassification.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set[T](param: Param[T], value: T): ConvNextForImageClassification.this.type
- Definition Classes
- Params
-
def
setBatchSize(size: Int): ConvNextForImageClassification.this.type
Size of every batch.
Size of every batch.
- Definition Classes
- HasBatchedAnnotateImage
-
def
setConfigProtoBytes(bytes: Array[Int]): ConvNextForImageClassification.this.type
ConfigProto from tensorflow, serialized into byte array.
ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()
- Definition Classes
- ViTForImageClassification
- def setCropPct(value: Double): ConvNextForImageClassification.this.type
-
def
setDefault[T](feature: StructFeature[T], value: () ⇒ T): ConvNextForImageClassification.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
setDefault[K, V](feature: MapFeature[K, V], value: () ⇒ Map[K, V]): ConvNextForImageClassification.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
setDefault[T](feature: SetFeature[T], value: () ⇒ Set[T]): ConvNextForImageClassification.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
setDefault[T](feature: ArrayFeature[T], value: () ⇒ Array[T]): ConvNextForImageClassification.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
setDefault(paramPairs: ParamPair[_]*): ConvNextForImageClassification.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
setDefault[T](param: Param[T], value: T): ConvNextForImageClassification.this.type
- Attributes
- protected[org.apache.spark.ml]
- Definition Classes
- Params
-
def
setDoNormalize(value: Boolean): ConvNextForImageClassification.this.type
- Definition Classes
- HasImageFeatureProperties
-
def
setDoRescale(value: Boolean): ConvNextForImageClassification.this.type
- Definition Classes
- HasRescaleFactor
-
def
setDoResize(value: Boolean): ConvNextForImageClassification.this.type
- Definition Classes
- HasImageFeatureProperties
-
def
setFeatureExtractorType(value: String): ConvNextForImageClassification.this.type
- Definition Classes
- HasImageFeatureProperties
-
def
setImageMean(value: Array[Double]): ConvNextForImageClassification.this.type
- Definition Classes
- HasImageFeatureProperties
-
def
setImageStd(value: Array[Double]): ConvNextForImageClassification.this.type
- Definition Classes
- HasImageFeatureProperties
-
final
def
setInputCols(value: String*): ConvNextForImageClassification.this.type
- Definition Classes
- HasInputAnnotationCols
-
def
setInputCols(value: Array[String]): ConvNextForImageClassification.this.type
Overrides required annotators column if different than default
Overrides required annotators column if different than default
- Definition Classes
- HasInputAnnotationCols
-
def
setLabels(value: Map[String, BigInt]): ConvNextForImageClassification.this.type
- Definition Classes
- ViTForImageClassification
-
def
setLazyAnnotator(value: Boolean): ConvNextForImageClassification.this.type
- Definition Classes
- CanBeLazy
-
def
setModelIfNotSet(spark: SparkSession, tensorflow: TensorflowWrapper, preprocessor: Preprocessor): ConvNextForImageClassification.this.type
- Definition Classes
- ConvNextForImageClassification → ViTForImageClassification
-
final
def
setOutputCol(value: String): ConvNextForImageClassification.this.type
Overrides annotation column name when transforming
Overrides annotation column name when transforming
- Definition Classes
- HasOutputAnnotationCol
-
def
setParent(parent: Estimator[ViTForImageClassification]): ViTForImageClassification
- Definition Classes
- Model
-
def
setResample(value: Int): ConvNextForImageClassification.this.type
- Definition Classes
- HasImageFeatureProperties
-
def
setRescaleFactor(value: Double): ConvNextForImageClassification.this.type
- Definition Classes
- HasRescaleFactor
-
def
setSignatures(value: Map[String, String]): ConvNextForImageClassification.this.type
- Definition Classes
- ViTForImageClassification
-
def
setSize(value: Int): ConvNextForImageClassification.this.type
- Definition Classes
- HasImageFeatureProperties
-
val
signatures: MapFeature[String, String]
It contains TF model signatures for the laded saved model
It contains TF model signatures for the laded saved model
- Definition Classes
- ViTForImageClassification
-
val
size: IntParam
Resize the input to the given size.
Resize the input to the given size. If a tuple is provided, it should be (width, height). If only an integer is provided, then the input will be resized to (size, size). Only has an effect if do_resize is set to True.
- Definition Classes
- HasImageFeatureProperties
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
-
final
def
transform(dataset: Dataset[_]): DataFrame
Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content
Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content
- dataset
Dataset[Row]
- Definition Classes
- AnnotatorModel → Transformer
-
def
transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
- Definition Classes
- Transformer
- Annotations
- @Since( "2.0.0" )
-
def
transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
- Definition Classes
- Transformer
- Annotations
- @Since( "2.0.0" ) @varargs()
-
final
def
transformSchema(schema: StructType): StructType
requirement for pipeline transformation validation.
requirement for pipeline transformation validation. It is called on fit()
- Definition Classes
- RawAnnotator → PipelineStage
-
def
transformSchema(schema: StructType, logging: Boolean): StructType
- Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
-
val
uid: String
- Definition Classes
- ConvNextForImageClassification → SwinForImageClassification → ViTForImageClassification → Identifiable
-
def
validate(schema: StructType): Boolean
takes a Dataset and checks to see if all the required annotation types are present.
takes a Dataset and checks to see if all the required annotation types are present.
- schema
to be validated
- returns
True if all the required types are present, else false
- Attributes
- protected
- Definition Classes
- RawAnnotator
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
def
wrapColumnMetadata(col: Column): Column
- Attributes
- protected
- Definition Classes
- RawAnnotator
-
def
write: MLWriter
- Definition Classes
- ParamsAndFeaturesWritable → DefaultParamsWritable → MLWritable
-
def
writeTensorflowHub(path: String, tfPath: String, spark: SparkSession, suffix: String = "_use"): Unit
- Definition Classes
- WriteTensorflowModel
-
def
writeTensorflowModel(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]] = None): Unit
- Definition Classes
- WriteTensorflowModel
-
def
writeTensorflowModelV2(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]] = None, savedSignatures: Option[Map[String, String]] = None): Unit
- Definition Classes
- WriteTensorflowModel
Inherited from SwinForImageClassification
Inherited from HasRescaleFactor
Inherited from ViTForImageClassification
Inherited from HasEngine
Inherited from WriteTensorflowModel
Inherited from HasImageFeatureProperties
Inherited from HasBatchedAnnotateImage[ViTForImageClassification]
Inherited from AnnotatorModel[ViTForImageClassification]
Inherited from CanBeLazy
Inherited from RawAnnotator[ViTForImageClassification]
Inherited from HasOutputAnnotationCol
Inherited from HasInputAnnotationCols
Inherited from HasOutputAnnotatorType
Inherited from ParamsAndFeaturesWritable
Inherited from HasFeatures
Inherited from DefaultParamsWritable
Inherited from MLWritable
Inherited from Model[ViTForImageClassification]
Inherited from Transformer
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.
Annotator types
Required input and expected output annotator types