class EntityRulerModel extends AnnotatorModel[EntityRulerModel] with HasSimpleAnnotate[EntityRulerModel] with HasStorageModel

Instantiated model of the EntityRulerApproach. For usage and examples see the documentation of the main class.

Ordering
  1. Grouped
  2. Alphabetic
  3. By Inheritance
Inherited
  1. EntityRulerModel
  2. HasStorageModel
  3. HasStorageOptions
  4. HasStorageReader
  5. HasCaseSensitiveProperties
  6. HasStorageRef
  7. HasSimpleAnnotate
  8. AnnotatorModel
  9. CanBeLazy
  10. RawAnnotator
  11. HasOutputAnnotationCol
  12. HasInputAnnotationCols
  13. HasOutputAnnotatorType
  14. ParamsAndFeaturesWritable
  15. HasFeatures
  16. DefaultParamsWritable
  17. MLWritable
  18. Model
  19. Transformer
  20. PipelineStage
  21. Logging
  22. Params
  23. Serializable
  24. Serializable
  25. Identifiable
  26. AnyRef
  27. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Parameters

A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.

  1. val caseSensitive: BooleanParam

    Whether to ignore case in index lookups (Default depends on model)

    Whether to ignore case in index lookups (Default depends on model)

    Definition Classes
    HasCaseSensitiveProperties
  2. val storageRef: Param[String]

    Unique identifier for storage (Default: this.uid)

    Unique identifier for storage (Default: this.uid)

    Definition Classes
    HasStorageRef

Members

  1. type AnnotatorType = String
    Definition Classes
    HasOutputAnnotatorType
  1. def _transform(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): DataFrame
    Definition Classes
    EntityRulerModelAnnotatorModel
  2. def annotate(annotations: Seq[Annotation]): Seq[Annotation]

    takes a document and annotations and produces new annotations of this annotator's annotation type

    takes a document and annotations and produces new annotations of this annotator's annotation type

    annotations

    Annotations that correspond to inputAnnotationCols generated by previous annotators if any

    returns

    any number of annotations processed for every input annotation. Not necessary one to one relationship

    Definition Classes
    EntityRulerModelHasSimpleAnnotate
  3. def beforeAnnotate(dataset: Dataset[_]): Dataset[_]
    Definition Classes
    EntityRulerModelAnnotatorModel
  4. final def clear(param: Param[_]): EntityRulerModel.this.type
    Definition Classes
    Params
  5. def copy(extra: ParamMap): EntityRulerModel

    requirement for annotators copies

    requirement for annotators copies

    Definition Classes
    RawAnnotator → Model → Transformer → PipelineStage → Params
  6. def createDatabaseConnection(database: Name): RocksDBConnection
    Definition Classes
    HasStorageRef
  7. def deserializeStorage(path: String, spark: SparkSession): Unit
    Definition Classes
    EntityRulerModelHasStorageModel
  8. def dfAnnotate: UserDefinedFunction

    Wraps annotate to happen inside SparkSQL user defined functions in order to act with org.apache.spark.sql.Column

    Wraps annotate to happen inside SparkSQL user defined functions in order to act with org.apache.spark.sql.Column

    returns

    udf function to be applied to inputCols using this annotator's annotate function as part of ML transformation

    Definition Classes
    HasSimpleAnnotate
  9. val enableInMemoryStorage: BooleanParam
    Definition Classes
    HasStorageOptions
  10. def explainParam(param: Param[_]): String
    Definition Classes
    Params
  11. def explainParams(): String
    Definition Classes
    Params
  12. final def extractParamMap(): ParamMap
    Definition Classes
    Params
  13. final def extractParamMap(extra: ParamMap): ParamMap
    Definition Classes
    Params
  14. val features: ArrayBuffer[Feature[_, _, _]]
    Definition Classes
    HasFeatures
  15. final def get[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  16. def getAutomatonModelIfNotSet: Option[AhoCorasickAutomaton]
  17. final def getDefault[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  18. def getEnableInMemoryStorage: Boolean
    Definition Classes
    HasStorageOptions
  19. def getIncludeStorage: Boolean
    Definition Classes
    HasStorageOptions
  20. def getInputCols: Array[String]

    returns

    input annotations columns currently used

    Definition Classes
    HasInputAnnotationCols
  21. def getLazyAnnotator: Boolean
    Definition Classes
    CanBeLazy
  22. final def getOrDefault[T](param: Param[T]): T
    Definition Classes
    Params
  23. final def getOutputCol: String

    Gets annotation column name going to generate

    Gets annotation column name going to generate

    Definition Classes
    HasOutputAnnotationCol
  24. def getParam(paramName: String): Param[Any]
    Definition Classes
    Params
  25. def getStorageRef: String
    Definition Classes
    HasStorageRef
  26. final def hasDefault[T](param: Param[T]): Boolean
    Definition Classes
    Params
  27. def hasParam(paramName: String): Boolean
    Definition Classes
    Params
  28. def hasParent: Boolean
    Definition Classes
    Model
  29. val includeStorage: BooleanParam
    Definition Classes
    HasStorageOptions
  30. val inputAnnotatorTypes: Array[String]

    Annotator reference id.

    Annotator reference id. Used to identify elements in metadata or to refer to this annotator type

    Definition Classes
    EntityRulerModelHasInputAnnotationCols
  31. final def isDefined(param: Param[_]): Boolean
    Definition Classes
    Params
  32. final def isSet(param: Param[_]): Boolean
    Definition Classes
    Params
  33. val lazyAnnotator: BooleanParam
    Definition Classes
    CanBeLazy
  34. def onWrite(path: String, spark: SparkSession): Unit
  35. val optionalInputAnnotatorTypes: Array[String]
  36. val outputAnnotatorType: AnnotatorType
  37. lazy val params: Array[Param[_]]
    Definition Classes
    Params
  38. var parent: Estimator[EntityRulerModel]
    Definition Classes
    Model
  39. def save(path: String): Unit
    Definition Classes
    MLWritable
    Annotations
    @Since( "1.6.0" ) @throws( ... )
  40. def saveStorage(path: String, spark: SparkSession, withinStorage: Boolean = false): Unit
    Definition Classes
    HasStorageModel
  41. def serializeStorage(path: String, spark: SparkSession): Unit
    Definition Classes
    HasStorageModel
  42. final def set[T](param: Param[T], value: T): EntityRulerModel.this.type
    Definition Classes
    Params
  43. def setAutomatonModelIfNotSet(spark: SparkSession, automaton: Option[AhoCorasickAutomaton]): EntityRulerModel.this.type
  44. def setEnableInMemoryStorage(value: Boolean): EntityRulerModel.this.type
    Definition Classes
    HasStorageOptions
  45. def setIncludeStorage(value: Boolean): EntityRulerModel.this.type
    Definition Classes
    HasStorageOptions
  46. final def setInputCols(value: String*): EntityRulerModel.this.type
    Definition Classes
    HasInputAnnotationCols
  47. def setInputCols(value: Array[String]): EntityRulerModel.this.type

    Overrides required annotators column if different than default

    Overrides required annotators column if different than default

    Definition Classes
    HasInputAnnotationCols
  48. def setLazyAnnotator(value: Boolean): EntityRulerModel.this.type
    Definition Classes
    CanBeLazy
  49. final def setOutputCol(value: String): EntityRulerModel.this.type

    Overrides annotation column name when transforming

    Overrides annotation column name when transforming

    Definition Classes
    HasOutputAnnotationCol
  50. def setParent(parent: Estimator[EntityRulerModel]): EntityRulerModel
    Definition Classes
    Model
  51. def setStorageRef(value: String): EntityRulerModel.this.type
    Definition Classes
    HasStorageRef
  52. def toString(): String
    Definition Classes
    Identifiable → AnyRef → Any
  53. final def transform(dataset: Dataset[_]): DataFrame

    Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content

    Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content

    dataset

    Dataset[Row]

    Definition Classes
    AnnotatorModel → Transformer
  54. def transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" )
  55. def transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" ) @varargs()
  56. final def transformSchema(schema: StructType): StructType

    requirement for pipeline transformation validation.

    requirement for pipeline transformation validation. It is called on fit()

    Definition Classes
    RawAnnotator → PipelineStage
  57. val uid: String
    Definition Classes
    EntityRulerModel → Identifiable
  58. def validateStorageRef(dataset: Dataset[_], inputCols: Array[String], annotatorType: String): Unit
    Definition Classes
    HasStorageRef
  59. def write: MLWriter
    Definition Classes
    ParamsAndFeaturesWritable → DefaultParamsWritable → MLWritable

Parameter setters

  1. def setCaseSensitive(value: Boolean): EntityRulerModel.this.type

    Definition Classes
    HasCaseSensitiveProperties

Parameter getters

  1. def getCaseSensitive: Boolean

    Definition Classes
    HasCaseSensitiveProperties