com.johnsnowlabs.nlp.annotators.sbd.pragmatic
SentenceDetector
Companion object SentenceDetector
class SentenceDetector extends AnnotatorModel[SentenceDetector] with HasSimpleAnnotate[SentenceDetector] with SentenceDetectorParams
Annotator that detects sentence boundaries using regular expressions.
The following characters are checked as sentence boundaries:
- Lists ("(i), (ii)", "(a), (b)", "1., 2.")
- Numbers
- Abbreviations
- Punctuations
- Multiple Periods
- Geo-Locations/Coordinates ("N°. 1026.253.553.")
- Ellipsis ("...")
- In-between punctuations
- Quotation marks
- Exclamation Points
- Basic Breakers (".", ";")
For the explicit regular expressions used for detection, refer to source of https://github.com/JohnSnowLabs/spark-nlp/blob/master/src/main/scala/com/johnsnowlabs/nlp/annotators/sbd/pragmatic/PragmaticContentFormatter.scala.
To add additional custom bounds, the parameter customBounds
can be set with an array:
val sentence = new SentenceDetector() .setInputCols("document") .setOutputCol("sentence") .setCustomBounds(Array("\n\n"))
If only the custom bounds should be used, then the parameter useCustomBoundsOnly
should be
set to true
.
Each extracted sentence can be returned in an Array or exploded to separate rows, if
explodeSentences
is set to true
.
For extended examples of usage, see the https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/annotation/text/english/sentence-detection/SentenceDetector_advanced_examples.ipynb.
Example
import spark.implicits._ import com.johnsnowlabs.nlp.base.DocumentAssembler import com.johnsnowlabs.nlp.annotator.SentenceDetector import org.apache.spark.ml.Pipeline val documentAssembler = new DocumentAssembler() .setInputCol("text") .setOutputCol("document") val sentence = new SentenceDetector() .setInputCols("document") .setOutputCol("sentence") .setCustomBounds(Array("\n\n")) val pipeline = new Pipeline().setStages(Array( documentAssembler, sentence )) val data = Seq("This is my first sentence. This my second.\n\nHow about a third?").toDF("text") val result = pipeline.fit(data).transform(data) result.selectExpr("explode(sentence) as sentences").show(false) +------------------------------------------------------------------+ |sentences | +------------------------------------------------------------------+ |[document, 0, 25, This is my first sentence., [sentence -> 0], []]| |[document, 27, 41, This my second., [sentence -> 1], []] | |[document, 43, 60, How about a third?, [sentence -> 2], []] | +------------------------------------------------------------------+
- See also
SentenceDetectorDLModel for pretrained models
- Grouped
- Alphabetic
- By Inheritance
- SentenceDetector
- SentenceDetectorParams
- HasSimpleAnnotate
- AnnotatorModel
- CanBeLazy
- RawAnnotator
- HasOutputAnnotationCol
- HasInputAnnotationCols
- HasOutputAnnotatorType
- ParamsAndFeaturesWritable
- HasFeatures
- DefaultParamsWritable
- MLWritable
- Model
- Transformer
- PipelineStage
- Logging
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
Type Members
-
type
AnnotationContent = Seq[Row]
internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI
internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI
- Attributes
- protected
- Definition Classes
- AnnotatorModel
-
type
AnnotatorType = String
- Definition Classes
- HasOutputAnnotatorType
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
$[T](param: Param[T]): T
- Attributes
- protected
- Definition Classes
- Params
-
def
$$[T](feature: StructFeature[T]): T
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
$$[K, V](feature: MapFeature[K, V]): Map[K, V]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
$$[T](feature: SetFeature[T]): Set[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
$$[T](feature: ArrayFeature[T]): Array[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
_transform(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): DataFrame
- Attributes
- protected
- Definition Classes
- AnnotatorModel
-
def
afterAnnotate(dataset: DataFrame): DataFrame
- Attributes
- protected
- Definition Classes
- SentenceDetector → AnnotatorModel
-
def
annotate(annotations: Seq[Annotation]): Seq[Annotation]
Uses the model interface to prepare the context and extract the boundaries
Uses the model interface to prepare the context and extract the boundaries
- annotations
Annotations that correspond to inputAnnotationCols generated by previous annotators if any
- returns
One to many annotation relationship depending on how many sentences there are in the document
- Definition Classes
- SentenceDetector → HasSimpleAnnotate
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
beforeAnnotate(dataset: Dataset[_]): Dataset[_]
- Definition Classes
- SentenceDetector → AnnotatorModel
-
final
def
checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
final
def
clear(param: Param[_]): SentenceDetector.this.type
- Definition Classes
- Params
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
def
copy(extra: ParamMap): SentenceDetector
requirement for annotators copies
requirement for annotators copies
- Definition Classes
- RawAnnotator → Model → Transformer → PipelineStage → Params
-
def
copyValues[T <: Params](to: T, extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
val
customBounds: StringArrayParam
Characters used to explicitly mark sentence bounds (Default: None)
Characters used to explicitly mark sentence bounds (Default: None)
- Definition Classes
- SentenceDetectorParams
-
val
customBoundsStrategy: Param[String]
How to return matched custom bounds (Default:
none
).How to return matched custom bounds (Default:
none
). Will have no effect if no custom bounds are used. Possible values are:- "none" - Will not return the matched bound
- "prepend" - Prepends a sentence break to the match
- "append" - Appends a sentence break to the match
- Definition Classes
- SentenceDetectorParams
-
final
def
defaultCopy[T <: Params](extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
val
detectLists: BooleanParam
Whether take lists into consideration at sentence detection (Default:
true
)Whether take lists into consideration at sentence detection (Default:
true
)- Definition Classes
- SentenceDetectorParams
-
def
dfAnnotate: UserDefinedFunction
Wraps annotate to happen inside SparkSQL user defined functions in order to act with org.apache.spark.sql.Column
Wraps annotate to happen inside SparkSQL user defined functions in order to act with org.apache.spark.sql.Column
- returns
udf function to be applied to inputCols using this annotator's annotate function as part of ML transformation
- Definition Classes
- HasSimpleAnnotate
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
explainParam(param: Param[_]): String
- Definition Classes
- Params
-
def
explainParams(): String
- Definition Classes
- Params
-
val
explodeSentences: BooleanParam
Whether to explode each sentence into a different row, for better parallelization (Default:
false
)Whether to explode each sentence into a different row, for better parallelization (Default:
false
)- Definition Classes
- SentenceDetectorParams
-
def
extraValidate(structType: StructType): Boolean
- Attributes
- protected
- Definition Classes
- RawAnnotator
-
def
extraValidateMsg: String
Override for additional custom schema checks
Override for additional custom schema checks
- Attributes
- protected
- Definition Classes
- RawAnnotator
-
final
def
extractParamMap(): ParamMap
- Definition Classes
- Params
-
final
def
extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
-
val
features: ArrayBuffer[Feature[_, _, _]]
- Definition Classes
- HasFeatures
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
def
get[T](feature: StructFeature[T]): Option[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
get[K, V](feature: MapFeature[K, V]): Option[Map[K, V]]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
get[T](feature: SetFeature[T]): Option[Set[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
get[T](feature: ArrayFeature[T]): Option[Array[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
getCustomBounds: Array[String]
Custom sentence separator text
Custom sentence separator text
- Definition Classes
- SentenceDetectorParams
-
def
getCustomBoundsStrategy: String
Gets how to return matched custom bounds (Default:
none
).Gets how to return matched custom bounds (Default:
none
).- Definition Classes
- SentenceDetectorParams
-
final
def
getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
def
getDetectLists: Boolean
Whether to take lists into consideration at sentence detection.
Whether to take lists into consideration at sentence detection. Defaults to true.
- Definition Classes
- SentenceDetectorParams
-
def
getExplodeSentences: Boolean
Whether to split sentences into different Dataset rows.
Whether to split sentences into different Dataset rows. Useful for higher parallelism in fat rows. Defaults to false.
- Definition Classes
- SentenceDetectorParams
-
def
getInputCols: Array[String]
- returns
input annotations columns currently used
- Definition Classes
- HasInputAnnotationCols
-
def
getLazyAnnotator: Boolean
- Definition Classes
- CanBeLazy
-
def
getMaxLength(value: Int): Int
Get the maximum allowed length for each sentence
Get the maximum allowed length for each sentence
- Definition Classes
- SentenceDetectorParams
-
def
getMinLength(value: Int): Int
Get the minimum allowed length for each sentence
Get the minimum allowed length for each sentence
- Definition Classes
- SentenceDetectorParams
-
final
def
getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
-
final
def
getOutputCol: String
Gets annotation column name going to generate
Gets annotation column name going to generate
- Definition Classes
- HasOutputAnnotationCol
-
def
getParam(paramName: String): Param[Any]
- Definition Classes
- Params
-
def
getSplitLength: Int
Length at which sentences will be forcibly split
Length at which sentences will be forcibly split
- Definition Classes
- SentenceDetectorParams
-
def
getUseAbbreviations: Boolean
Whether to consider abbreviation strategies for better accuracy but slower performance.
Whether to consider abbreviation strategies for better accuracy but slower performance. Defaults to true.
- Definition Classes
- SentenceDetectorParams
-
def
getUseCustomBoundsOnly: Boolean
Use only custom bounds without considering those of Pragmatic Segmenter.
Use only custom bounds without considering those of Pragmatic Segmenter. Defaults to false. Needs customBounds.
- Definition Classes
- SentenceDetectorParams
-
final
def
hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
-
def
hasParam(paramName: String): Boolean
- Definition Classes
- Params
-
def
hasParent: Boolean
- Definition Classes
- Model
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
def
initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
val
inputAnnotatorTypes: Array[AnnotatorType]
Input annotator type : DOCUMENT
Input annotator type : DOCUMENT
- Definition Classes
- SentenceDetector → HasInputAnnotationCols
-
final
val
inputCols: StringArrayParam
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
final
def
isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
isSet(param: Param[_]): Boolean
- Definition Classes
- Params
-
def
isTraceEnabled(): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
val
lazyAnnotator: BooleanParam
- Definition Classes
- CanBeLazy
-
def
log: Logger
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logName: String
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
val
maxLength: IntParam
Set the maximum allowed length for each sentence (Ignored if not set)
Set the maximum allowed length for each sentence (Ignored if not set)
- Definition Classes
- SentenceDetectorParams
-
val
minLength: IntParam
Set the minimum allowed length for each sentence (Default:
0
)Set the minimum allowed length for each sentence (Default:
0
)- Definition Classes
- SentenceDetectorParams
- lazy val model: PragmaticMethod
-
def
msgHelper(schema: StructType): String
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
onWrite(path: String, spark: SparkSession): Unit
- Attributes
- protected
- Definition Classes
- ParamsAndFeaturesWritable
-
val
optionalInputAnnotatorTypes: Array[String]
- Definition Classes
- HasInputAnnotationCols
-
val
outputAnnotatorType: AnnotatorType
Output annotator type : DOCUMENT
Output annotator type : DOCUMENT
- Definition Classes
- SentenceDetector → HasOutputAnnotatorType
-
final
val
outputCol: Param[String]
- Attributes
- protected
- Definition Classes
- HasOutputAnnotationCol
-
lazy val
params: Array[Param[_]]
- Definition Classes
- Params
-
var
parent: Estimator[SentenceDetector]
- Definition Classes
- Model
-
def
save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @Since( "1.6.0" ) @throws( ... )
-
def
set[T](feature: StructFeature[T], value: T): SentenceDetector.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
set[K, V](feature: MapFeature[K, V], value: Map[K, V]): SentenceDetector.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
set[T](feature: SetFeature[T], value: Set[T]): SentenceDetector.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
set[T](feature: ArrayFeature[T], value: Array[T]): SentenceDetector.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
set(paramPair: ParamPair[_]): SentenceDetector.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set(param: String, value: Any): SentenceDetector.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set[T](param: Param[T], value: T): SentenceDetector.this.type
- Definition Classes
- Params
-
def
setCustomBounds(value: Array[String]): SentenceDetector.this.type
Custom sentence separator text
Custom sentence separator text
- Definition Classes
- SentenceDetectorParams
-
def
setCustomBoundsStrategy(value: String): SentenceDetector.this.type
Sets how to return matched custom bounds (Default:
none
).Sets how to return matched custom bounds (Default:
none
). Will have no effect if no custom bounds are used. Possible values are:- "none" - Will not return the matched bound
- "prepend" - Prepends a sentence break to the match
- "append" - Appends a sentence break to the match
- Definition Classes
- SentenceDetectorParams
-
def
setDefault[T](feature: StructFeature[T], value: () ⇒ T): SentenceDetector.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
setDefault[K, V](feature: MapFeature[K, V], value: () ⇒ Map[K, V]): SentenceDetector.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
setDefault[T](feature: SetFeature[T], value: () ⇒ Set[T]): SentenceDetector.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
setDefault[T](feature: ArrayFeature[T], value: () ⇒ Array[T]): SentenceDetector.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
setDefault(paramPairs: ParamPair[_]*): SentenceDetector.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
setDefault[T](param: Param[T], value: T): SentenceDetector.this.type
- Attributes
- protected[org.apache.spark.ml]
- Definition Classes
- Params
-
def
setDetectLists(value: Boolean): SentenceDetector.this.type
Whether to take lists into consideration at sentence detection.
Whether to take lists into consideration at sentence detection. Defaults to true.
- Definition Classes
- SentenceDetectorParams
-
def
setExplodeSentences(value: Boolean): SentenceDetector.this.type
Whether to split sentences into different Dataset rows.
Whether to split sentences into different Dataset rows. Useful for higher parallelism in fat rows. Defaults to false.
- Definition Classes
- SentenceDetectorParams
-
final
def
setInputCols(value: String*): SentenceDetector.this.type
- Definition Classes
- HasInputAnnotationCols
-
def
setInputCols(value: Array[String]): SentenceDetector.this.type
Overrides required annotators column if different than default
Overrides required annotators column if different than default
- Definition Classes
- HasInputAnnotationCols
-
def
setLazyAnnotator(value: Boolean): SentenceDetector.this.type
- Definition Classes
- CanBeLazy
-
def
setMaxLength(value: Int): SentenceDetector.this.type
Set the maximum allowed length for each sentence
Set the maximum allowed length for each sentence
- Definition Classes
- SentenceDetectorParams
-
def
setMinLength(value: Int): SentenceDetector.this.type
Set the minimum allowed length for each sentence
Set the minimum allowed length for each sentence
- Definition Classes
- SentenceDetectorParams
-
final
def
setOutputCol(value: String): SentenceDetector.this.type
Overrides annotation column name when transforming
Overrides annotation column name when transforming
- Definition Classes
- HasOutputAnnotationCol
-
def
setParent(parent: Estimator[SentenceDetector]): SentenceDetector
- Definition Classes
- Model
-
def
setSplitLength(value: Int): SentenceDetector.this.type
Length at which sentences will be forcibly split
Length at which sentences will be forcibly split
- Definition Classes
- SentenceDetectorParams
-
def
setUseAbbreviations(value: Boolean): SentenceDetector.this.type
Whether to consider abbreviation strategies for better accuracy but slower performance.
Whether to consider abbreviation strategies for better accuracy but slower performance. Defaults to true.
- Definition Classes
- SentenceDetectorParams
-
def
setUseCustomBoundsOnly(value: Boolean): SentenceDetector.this.type
Use only custom bounds without considering those of Pragmatic Segmenter.
Use only custom bounds without considering those of Pragmatic Segmenter. Defaults to false. Needs customBounds.
- Definition Classes
- SentenceDetectorParams
-
val
splitLength: IntParam
Length at which sentences will be forcibly split (Ignored if not set)
Length at which sentences will be forcibly split (Ignored if not set)
- Definition Classes
- SentenceDetectorParams
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
- def tag(document: String): Array[Sentence]
-
def
toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
-
final
def
transform(dataset: Dataset[_]): DataFrame
Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content
Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content
- dataset
Dataset[Row]
- Definition Classes
- AnnotatorModel → Transformer
-
def
transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
- Definition Classes
- Transformer
- Annotations
- @Since( "2.0.0" )
-
def
transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
- Definition Classes
- Transformer
- Annotations
- @Since( "2.0.0" ) @varargs()
-
final
def
transformSchema(schema: StructType): StructType
requirement for pipeline transformation validation.
requirement for pipeline transformation validation. It is called on fit()
- Definition Classes
- RawAnnotator → PipelineStage
-
def
transformSchema(schema: StructType, logging: Boolean): StructType
- Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
-
def
truncateSentence(sentence: String, maxLength: Int): Array[String]
- Definition Classes
- SentenceDetectorParams
-
val
uid: String
- Definition Classes
- SentenceDetector → Identifiable
-
val
useAbbrevations: BooleanParam
Whether to apply abbreviations at sentence detection (Default:
true
)Whether to apply abbreviations at sentence detection (Default:
true
)- Definition Classes
- SentenceDetectorParams
-
val
useCustomBoundsOnly: BooleanParam
Whether to only utilize custom bounds for sentence detection (Default:
false
)Whether to only utilize custom bounds for sentence detection (Default:
false
)- Definition Classes
- SentenceDetectorParams
-
def
validate(schema: StructType): Boolean
takes a Dataset and checks to see if all the required annotation types are present.
takes a Dataset and checks to see if all the required annotation types are present.
- schema
to be validated
- returns
True if all the required types are present, else false
- Attributes
- protected
- Definition Classes
- RawAnnotator
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
def
wrapColumnMetadata(col: Column): Column
- Attributes
- protected
- Definition Classes
- RawAnnotator
-
def
write: MLWriter
- Definition Classes
- ParamsAndFeaturesWritable → DefaultParamsWritable → MLWritable
Inherited from SentenceDetectorParams
Inherited from HasSimpleAnnotate[SentenceDetector]
Inherited from AnnotatorModel[SentenceDetector]
Inherited from CanBeLazy
Inherited from RawAnnotator[SentenceDetector]
Inherited from HasOutputAnnotationCol
Inherited from HasInputAnnotationCols
Inherited from HasOutputAnnotatorType
Inherited from ParamsAndFeaturesWritable
Inherited from HasFeatures
Inherited from DefaultParamsWritable
Inherited from MLWritable
Inherited from Model[SentenceDetector]
Inherited from Transformer
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.
Annotator types
Required input and expected output annotator types