com.johnsnowlabs.nlp.annotators.sentence_detector_dl
SentenceDetectorDLModel
Companion object SentenceDetectorDLModel
class SentenceDetectorDLModel extends AnnotatorModel[SentenceDetectorDLModel] with HasSimpleAnnotate[SentenceDetectorDLModel] with HasStorageRef with ParamsAndFeaturesWritable with WriteTensorflowModel with HasEngine
Annotator that detects sentence boundaries using a deep learning approach.
Instantiated Model of the SentenceDetectorDLApproach. Detects sentence boundaries using a deep learning approach.
Pretrained models can be loaded with pretrained
of the companion object:
val sentenceDL = SentenceDetectorDLModel.pretrained() .setInputCols("document") .setOutputCol("sentencesDL")
The default model is "sentence_detector_dl"
, if no name is provided. For available
pretrained models please see the
Models Hub.
Each extracted sentence can be returned in an Array or exploded to separate rows, if
explodeSentences
is set to true
.
For extended examples of usage, see the Examples and the SentenceDetectorDLSpec.
Example
In this example, the normal SentenceDetector
is compared to the SentenceDetectorDLModel
.
In a pipeline, SentenceDetectorDLModel
can be used as a replacement for the
SentenceDetector
.
import spark.implicits._ import com.johnsnowlabs.nlp.base.DocumentAssembler import com.johnsnowlabs.nlp.annotator.SentenceDetector import com.johnsnowlabs.nlp.annotators.sentence_detector_dl.SentenceDetectorDLModel import org.apache.spark.ml.Pipeline val documentAssembler = new DocumentAssembler() .setInputCol("text") .setOutputCol("document") val sentence = new SentenceDetector() .setInputCols("document") .setOutputCol("sentences") val sentenceDL = SentenceDetectorDLModel .pretrained("sentence_detector_dl", "en") .setInputCols("document") .setOutputCol("sentencesDL") val pipeline = new Pipeline().setStages(Array( documentAssembler, sentence, sentenceDL )) val data = Seq("""John loves Mary.Mary loves Peter Peter loves Helen .Helen loves John; Total: four people involved.""").toDF("text") val result = pipeline.fit(data).transform(data) result.selectExpr("explode(sentences.result) as sentences").show(false) +----------------------------------------------------------+ |sentences | +----------------------------------------------------------+ |John loves Mary.Mary loves Peter\n Peter loves Helen .| |Helen loves John; | |Total: four people involved. | +----------------------------------------------------------+ result.selectExpr("explode(sentencesDL.result) as sentencesDL").show(false) +----------------------------+ |sentencesDL | +----------------------------+ |John loves Mary. | |Mary loves Peter | |Peter loves Helen . | |Helen loves John; | |Total: four people involved.| +----------------------------+
- See also
SentenceDetectorDLApproach for training a model yourself
SentenceDetector for non deep learning extraction
- Grouped
- Alphabetic
- By Inheritance
- SentenceDetectorDLModel
- HasEngine
- WriteTensorflowModel
- HasStorageRef
- HasSimpleAnnotate
- AnnotatorModel
- CanBeLazy
- RawAnnotator
- HasOutputAnnotationCol
- HasInputAnnotationCols
- HasOutputAnnotatorType
- ParamsAndFeaturesWritable
- HasFeatures
- DefaultParamsWritable
- MLWritable
- Model
- Transformer
- PipelineStage
- Logging
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
Type Members
-
type
AnnotationContent = Seq[Row]
internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI
internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI
- Attributes
- protected
- Definition Classes
- AnnotatorModel
-
type
AnnotatorType = String
- Definition Classes
- HasOutputAnnotatorType
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
$[T](param: Param[T]): T
- Attributes
- protected
- Definition Classes
- Params
-
def
$$[T](feature: StructFeature[T]): T
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
$$[K, V](feature: MapFeature[K, V]): Map[K, V]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
$$[T](feature: SetFeature[T]): Set[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
$$[T](feature: ArrayFeature[T]): Array[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
_transform(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): DataFrame
- Attributes
- protected
- Definition Classes
- AnnotatorModel
-
def
afterAnnotate(dataset: DataFrame): DataFrame
- Attributes
- protected
- Definition Classes
- SentenceDetectorDLModel → AnnotatorModel
-
def
annotate(annotations: Seq[Annotation]): Seq[Annotation]
takes a document and annotations and produces new annotations of this annotator's annotation type
takes a document and annotations and produces new annotations of this annotator's annotation type
- annotations
Annotations that correspond to inputAnnotationCols generated by previous annotators if any
- returns
any number of annotations processed for every input annotation. Not necessary one to one relationship
- Definition Classes
- SentenceDetectorDLModel → HasSimpleAnnotate
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
beforeAnnotate(dataset: Dataset[_]): Dataset[_]
- Attributes
- protected
- Definition Classes
- AnnotatorModel
-
final
def
checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
final
def
clear(param: Param[_]): SentenceDetectorDLModel.this.type
- Definition Classes
- Params
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
def
copy(extra: ParamMap): SentenceDetectorDLModel
requirement for annotators copies
requirement for annotators copies
- Definition Classes
- RawAnnotator → Model → Transformer → PipelineStage → Params
-
def
copyValues[T <: Params](to: T, extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
def
createDatabaseConnection(database: Name): RocksDBConnection
- Definition Classes
- HasStorageRef
-
val
customBounds: StringArrayParam
Characters used to explicitly mark sentence bounds (Default: None)
-
final
def
defaultCopy[T <: Params](extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
def
dfAnnotate: UserDefinedFunction
Wraps annotate to happen inside SparkSQL user defined functions in order to act with org.apache.spark.sql.Column
Wraps annotate to happen inside SparkSQL user defined functions in order to act with org.apache.spark.sql.Column
- returns
udf function to be applied to inputCols using this annotator's annotate function as part of ML transformation
- Definition Classes
- HasSimpleAnnotate
- var encoder: SentenceDetectorDLEncoderParam
-
val
engine: Param[String]
This param is set internally once via loadSavedModel.
This param is set internally once via loadSavedModel. That's why there is no setter
- Definition Classes
- HasEngine
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
explainParam(param: Param[_]): String
- Definition Classes
- Params
-
def
explainParams(): String
- Definition Classes
- Params
-
val
explodeSentences: BooleanParam
A flag indicating whether to split sentences into different Dataset rows.
A flag indicating whether to split sentences into different Dataset rows. Useful for higher parallelism in fat rows (Default:
false
) -
def
extraValidate(structType: StructType): Boolean
- Attributes
- protected
- Definition Classes
- RawAnnotator
-
def
extraValidateMsg: String
Override for additional custom schema checks
Override for additional custom schema checks
- Attributes
- protected
- Definition Classes
- RawAnnotator
-
final
def
extractParamMap(): ParamMap
- Definition Classes
- Params
-
final
def
extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
-
val
features: ArrayBuffer[Feature[_, _, _]]
- Definition Classes
- HasFeatures
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
def
get[T](feature: StructFeature[T]): Option[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
get[K, V](feature: MapFeature[K, V]): Option[Map[K, V]]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
get[T](feature: SetFeature[T]): Option[Set[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
get[T](feature: ArrayFeature[T]): Option[Array[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
getCustomBounds: Array[String]
Custom sentence separator text
-
final
def
getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
- def getEncoder: SentenceDetectorDLEncoder
-
def
getEngine: String
- Definition Classes
- HasEngine
-
def
getExplodeSentences: Boolean
Whether to split sentences into different Dataset rows.
Whether to split sentences into different Dataset rows. Useful for higher parallelism in fat rows. Defaults to false.
-
def
getImpossiblePenultimates: Array[String]
Get impossible penultimates
-
def
getInputCols: Array[String]
- returns
input annotations columns currently used
- Definition Classes
- HasInputAnnotationCols
-
def
getLazyAnnotator: Boolean
- Definition Classes
- CanBeLazy
-
def
getMaxLength: Int
Get the maximum allowed length for each sentence
- def getMetrics(text: String, injectNewLines: Boolean = false): Metrics
-
def
getMinLength: Int
Get the minimum allowed length for each sentence
-
def
getModel: String
Get model architecture
-
final
def
getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
-
final
def
getOutputCol: String
Gets annotation column name going to generate
Gets annotation column name going to generate
- Definition Classes
- HasOutputAnnotationCol
-
def
getParam(paramName: String): Param[Any]
- Definition Classes
- Params
-
def
getSplitLength: Int
Length at which sentences will be forcibly split
-
def
getStorageRef: String
- Definition Classes
- HasStorageRef
- def getTFClassifier: SentenceDetectorDL
-
def
getUseCustomBoundsOnly: Boolean
Use only custom bounds without considering those of Pragmatic Segmenter.
Use only custom bounds without considering those of Pragmatic Segmenter. Defaults to false. Needs customBounds.
-
final
def
hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
-
def
hasParam(paramName: String): Boolean
- Definition Classes
- Params
-
def
hasParent: Boolean
- Definition Classes
- Model
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
val
impossiblePenultimates: StringArrayParam
Impossible penultimates (Default:
Array()
) -
def
initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
def
initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
val
inputAnnotatorTypes: Array[AnnotatorType]
Output annotator type : DOCUMENT
Output annotator type : DOCUMENT
- Definition Classes
- SentenceDetectorDLModel → HasInputAnnotationCols
-
final
val
inputCols: StringArrayParam
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
final
def
isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
isSet(param: Param[_]): Boolean
- Definition Classes
- Params
-
def
isTraceEnabled(): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
val
lazyAnnotator: BooleanParam
- Definition Classes
- CanBeLazy
-
def
log: Logger
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logName: String
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
val
maxLength: IntParam
Set the maximum allowed length for each sentence (Ignored if not set)
-
val
minLength: IntParam
Set the minimum allowed length for each sentence (Default:
0
) -
var
modelArchitecture: Param[String]
Model architecture (Default:
"cnn"
) -
def
msgHelper(schema: StructType): String
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
onWrite(path: String, spark: SparkSession): Unit
- Definition Classes
- SentenceDetectorDLModel → ParamsAndFeaturesWritable
-
val
optionalInputAnnotatorTypes: Array[String]
- Definition Classes
- HasInputAnnotationCols
-
val
outputAnnotatorType: String
Output annotator type : DOCUMENT
Output annotator type : DOCUMENT
- Definition Classes
- SentenceDetectorDLModel → HasOutputAnnotatorType
-
final
val
outputCol: Param[String]
- Attributes
- protected
- Definition Classes
- HasOutputAnnotationCol
-
lazy val
params: Array[Param[_]]
- Definition Classes
- Params
-
var
parent: Estimator[SentenceDetectorDLModel]
- Definition Classes
- Model
- def processText(text: String, processCustomBounds: Boolean = true): Iterator[(Int, Int, String)]
-
def
save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @Since( "1.6.0" ) @throws( ... )
-
def
set[T](feature: StructFeature[T], value: T): SentenceDetectorDLModel.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
set[K, V](feature: MapFeature[K, V], value: Map[K, V]): SentenceDetectorDLModel.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
set[T](feature: SetFeature[T], value: Set[T]): SentenceDetectorDLModel.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
set[T](feature: ArrayFeature[T], value: Array[T]): SentenceDetectorDLModel.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
set(paramPair: ParamPair[_]): SentenceDetectorDLModel.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set(param: String, value: Any): SentenceDetectorDLModel.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set[T](param: Param[T], value: T): SentenceDetectorDLModel.this.type
- Definition Classes
- Params
-
def
setCustomBounds(value: Array[String]): SentenceDetectorDLModel.this.type
Custom sentence separator text
-
def
setDefault[T](feature: StructFeature[T], value: () ⇒ T): SentenceDetectorDLModel.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
setDefault[K, V](feature: MapFeature[K, V], value: () ⇒ Map[K, V]): SentenceDetectorDLModel.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
setDefault[T](feature: SetFeature[T], value: () ⇒ Set[T]): SentenceDetectorDLModel.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
setDefault[T](feature: ArrayFeature[T], value: () ⇒ Array[T]): SentenceDetectorDLModel.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
setDefault(paramPairs: ParamPair[_]*): SentenceDetectorDLModel.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
setDefault[T](param: Param[T], value: T): SentenceDetectorDLModel.this.type
- Attributes
- protected[org.apache.spark.ml]
- Definition Classes
- Params
- def setEncoder(encoder: SentenceDetectorDLEncoder): SentenceDetectorDLModel.this.type
-
def
setExplodeSentences(value: Boolean): SentenceDetectorDLModel.this.type
Whether to split sentences into different Dataset rows.
Whether to split sentences into different Dataset rows. Useful for higher parallelism in fat rows. Defaults to false.
-
def
setImpossiblePenultimates(impossiblePenultimates: Array[String]): SentenceDetectorDLModel.this.type
Set impossible penultimates
-
final
def
setInputCols(value: String*): SentenceDetectorDLModel.this.type
- Definition Classes
- HasInputAnnotationCols
-
def
setInputCols(value: Array[String]): SentenceDetectorDLModel.this.type
Overrides required annotators column if different than default
Overrides required annotators column if different than default
- Definition Classes
- HasInputAnnotationCols
-
def
setLazyAnnotator(value: Boolean): SentenceDetectorDLModel.this.type
- Definition Classes
- CanBeLazy
-
def
setMaxLength(value: Int): SentenceDetectorDLModel.this.type
Set the maximum allowed length for each sentence
-
def
setMinLength(value: Int): SentenceDetectorDLModel.this.type
Set the minimum allowed length for each sentence
-
def
setModel(modelArchitecture: String): SentenceDetectorDLModel.this.type
Set architecture
-
final
def
setOutputCol(value: String): SentenceDetectorDLModel.this.type
Overrides annotation column name when transforming
Overrides annotation column name when transforming
- Definition Classes
- HasOutputAnnotationCol
-
def
setParent(parent: Estimator[SentenceDetectorDLModel]): SentenceDetectorDLModel
- Definition Classes
- Model
-
def
setSplitLength(value: Int): SentenceDetectorDLModel.this.type
Length at which sentences will be forcibly split
-
def
setStorageRef(value: String): SentenceDetectorDLModel.this.type
- Definition Classes
- HasStorageRef
-
def
setUseCustomBoundsOnly(value: Boolean): SentenceDetectorDLModel.this.type
Use only custom bounds without considering those of Pragmatic Segmenter.
Use only custom bounds without considering those of Pragmatic Segmenter. Defaults to false. Needs customBounds.
- def setupNew(spark: SparkSession, modelPath: String, vocabularyPath: String): SentenceDetectorDLModel.this.type
- def setupTFClassifier(spark: SparkSession, tfWrapper: TensorflowWrapper): SentenceDetectorDLModel.this.type
-
val
splitLength: IntParam
Length at which sentences will be forcibly split (Ignored if not set)
-
val
storageRef: Param[String]
Unique identifier for storage (Default:
this.uid
)Unique identifier for storage (Default:
this.uid
)- Definition Classes
- HasStorageRef
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
-
final
def
transform(dataset: Dataset[_]): DataFrame
Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content
Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content
- dataset
Dataset[Row]
- Definition Classes
- AnnotatorModel → Transformer
-
def
transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
- Definition Classes
- Transformer
- Annotations
- @Since( "2.0.0" )
-
def
transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
- Definition Classes
- Transformer
- Annotations
- @Since( "2.0.0" ) @varargs()
-
final
def
transformSchema(schema: StructType): StructType
requirement for pipeline transformation validation.
requirement for pipeline transformation validation. It is called on fit()
- Definition Classes
- RawAnnotator → PipelineStage
-
def
transformSchema(schema: StructType, logging: Boolean): StructType
- Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
-
val
uid: String
- Definition Classes
- SentenceDetectorDLModel → Identifiable
-
val
useCustomBoundsOnly: BooleanParam
Whether to only utilize custom bounds for sentence detection (Default:
false
) -
def
validate(schema: StructType): Boolean
takes a Dataset and checks to see if all the required annotation types are present.
takes a Dataset and checks to see if all the required annotation types are present.
- schema
to be validated
- returns
True if all the required types are present, else false
- Attributes
- protected
- Definition Classes
- RawAnnotator
-
def
validateStorageRef(dataset: Dataset[_], inputCols: Array[String], annotatorType: String): Unit
- Definition Classes
- HasStorageRef
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
def
wrapColumnMetadata(col: Column): Column
- Attributes
- protected
- Definition Classes
- RawAnnotator
-
def
write: MLWriter
- Definition Classes
- ParamsAndFeaturesWritable → DefaultParamsWritable → MLWritable
-
def
writeTensorflowHub(path: String, tfPath: String, spark: SparkSession, suffix: String = "_use"): Unit
- Definition Classes
- WriteTensorflowModel
-
def
writeTensorflowModel(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]] = None): Unit
- Definition Classes
- WriteTensorflowModel
-
def
writeTensorflowModelV2(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]] = None, savedSignatures: Option[Map[String, String]] = None): Unit
- Definition Classes
- WriteTensorflowModel
Inherited from HasEngine
Inherited from WriteTensorflowModel
Inherited from HasStorageRef
Inherited from HasSimpleAnnotate[SentenceDetectorDLModel]
Inherited from AnnotatorModel[SentenceDetectorDLModel]
Inherited from CanBeLazy
Inherited from RawAnnotator[SentenceDetectorDLModel]
Inherited from HasOutputAnnotationCol
Inherited from HasInputAnnotationCols
Inherited from HasOutputAnnotatorType
Inherited from ParamsAndFeaturesWritable
Inherited from HasFeatures
Inherited from DefaultParamsWritable
Inherited from MLWritable
Inherited from Model[SentenceDetectorDLModel]
Inherited from Transformer
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.
Annotator types
Required input and expected output annotator types