com.johnsnowlabs.nlp.annotators.sda.pragmatic
SentimentDetector
Companion object SentimentDetector
class SentimentDetector extends AnnotatorApproach[SentimentDetectorModel]
Trains a rule based sentiment detector, which calculates a score based on predefined keywords.
A dictionary of predefined sentiment keywords must be provided with setDictionary
, where
each line is a word delimited to its class (either positive
or negative
). The dictionary
can be set in either in the form of a delimited text file or directly as an
ExternalResource.
By default, the sentiment score will be assigned labels "positive"
if the score is >= 0
,
else "negative"
. To retrieve the raw sentiment scores, enableScore
needs to be set to
true
.
For extended examples of usage, see the Examples and the SentimentTestSpec.
Example
In this example, the dictionary default-sentiment-dict.txt
has the form of
... cool,positive superb,positive bad,negative uninspired,negative ...
where each sentiment keyword is delimited by ","
.
import spark.implicits._ import com.johnsnowlabs.nlp.DocumentAssembler import com.johnsnowlabs.nlp.annotator.Tokenizer import com.johnsnowlabs.nlp.annotators.Lemmatizer import com.johnsnowlabs.nlp.annotators.sda.pragmatic.SentimentDetector import com.johnsnowlabs.nlp.util.io.ReadAs import org.apache.spark.ml.Pipeline val documentAssembler = new DocumentAssembler() .setInputCol("text") .setOutputCol("document") val tokenizer = new Tokenizer() .setInputCols("document") .setOutputCol("token") val lemmatizer = new Lemmatizer() .setInputCols("token") .setOutputCol("lemma") .setDictionary("src/test/resources/lemma-corpus-small/lemmas_small.txt", "->", "\t") val sentimentDetector = new SentimentDetector() .setInputCols("lemma", "document") .setOutputCol("sentimentScore") .setDictionary("src/test/resources/sentiment-corpus/default-sentiment-dict.txt", ",", ReadAs.TEXT) val pipeline = new Pipeline().setStages(Array( documentAssembler, tokenizer, lemmatizer, sentimentDetector, )) val data = Seq( "The staff of the restaurant is nice", "I recommend others to avoid because it is too expensive" ).toDF("text") val result = pipeline.fit(data).transform(data) result.selectExpr("sentimentScore.result").show(false) +----------+ // +------+ for enableScore set to true |result | // |result| +----------+ // +------+ |[positive]| // |[1.0] | |[negative]| // |[-2.0]| +----------+ // +------+
- See also
ViveknSentimentApproach for an alternative approach to sentiment extraction
- Grouped
- Alphabetic
- By Inheritance
- SentimentDetector
- AnnotatorApproach
- CanBeLazy
- DefaultParamsWritable
- MLWritable
- HasOutputAnnotatorType
- HasOutputAnnotationCol
- HasInputAnnotationCols
- Estimator
- PipelineStage
- Logging
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
Type Members
-
type
AnnotatorType = String
- Definition Classes
- HasOutputAnnotatorType
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
$[T](param: Param[T]): T
- Attributes
- protected
- Definition Classes
- Params
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
_fit(dataset: Dataset[_], recursiveStages: Option[PipelineModel]): SentimentDetectorModel
- Attributes
- protected
- Definition Classes
- AnnotatorApproach
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
beforeTraining(spark: SparkSession): Unit
- Definition Classes
- AnnotatorApproach
-
final
def
checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
final
def
clear(param: Param[_]): SentimentDetector.this.type
- Definition Classes
- Params
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
final
def
copy(extra: ParamMap): Estimator[SentimentDetectorModel]
- Definition Classes
- AnnotatorApproach → Estimator → PipelineStage → Params
-
def
copyValues[T <: Params](to: T, extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
val
decrementMultiplier: DoubleParam
Multiplier for decrement sentiments (Default:
-2.0
) -
final
def
defaultCopy[T <: Params](extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
val
description: String
Rule based sentiment detector
Rule based sentiment detector
- Definition Classes
- SentimentDetector → AnnotatorApproach
-
val
dictionary: ExternalResourceParam
Delimited file with a list sentiment tags per word (either
positive
ornegative
).Delimited file with a list sentiment tags per word (either
positive
ornegative
). Requires 'delimiter
' inoptions
.Example
cool,positive superb,positive bad,negative uninspired,negative
where the '
delimiter
' options was set withMap("delimiter" -> ",")
-
val
enableScore: BooleanParam
If true, score will show as the double value, else will output string
"positive"
or"negative"
(Default:false
) -
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
explainParam(param: Param[_]): String
- Definition Classes
- Params
-
def
explainParams(): String
- Definition Classes
- Params
-
final
def
extractParamMap(): ParamMap
- Definition Classes
- Params
-
final
def
extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
fit(dataset: Dataset[_]): SentimentDetectorModel
- Definition Classes
- AnnotatorApproach → Estimator
-
def
fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[SentimentDetectorModel]
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" )
-
def
fit(dataset: Dataset[_], paramMap: ParamMap): SentimentDetectorModel
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" )
-
def
fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): SentimentDetectorModel
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" ) @varargs()
-
final
def
get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
def
getInputCols: Array[String]
- returns
input annotations columns currently used
- Definition Classes
- HasInputAnnotationCols
-
def
getLazyAnnotator: Boolean
- Definition Classes
- CanBeLazy
-
final
def
getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
-
final
def
getOutputCol: String
Gets annotation column name going to generate
Gets annotation column name going to generate
- Definition Classes
- HasOutputAnnotationCol
-
def
getParam(paramName: String): Param[Any]
- Definition Classes
- Params
-
final
def
hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
-
def
hasParam(paramName: String): Boolean
- Definition Classes
- Params
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
val
incrementMultiplier: DoubleParam
Multiplier for increment sentiments (Default:
2.0
) -
def
initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
def
initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
val
inputAnnotatorTypes: Array[AnnotatorType]
Input annotation type : TOKEN, DOCUMENT
Input annotation type : TOKEN, DOCUMENT
- Definition Classes
- SentimentDetector → HasInputAnnotationCols
-
final
val
inputCols: StringArrayParam
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
final
def
isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
isSet(param: Param[_]): Boolean
- Definition Classes
- Params
-
def
isTraceEnabled(): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
val
lazyAnnotator: BooleanParam
- Definition Classes
- CanBeLazy
-
def
log: Logger
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logName: String
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
msgHelper(schema: StructType): String
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
val
negativeMultiplier: DoubleParam
Multiplier for negative sentiments (Default:
-1.0
) -
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
onTrained(model: SentimentDetectorModel, spark: SparkSession): Unit
- Definition Classes
- AnnotatorApproach
-
val
optionalInputAnnotatorTypes: Array[String]
- Definition Classes
- HasInputAnnotationCols
-
val
outputAnnotatorType: AnnotatorType
Output annotation type : SENTIMENT
Output annotation type : SENTIMENT
- Definition Classes
- SentimentDetector → HasOutputAnnotatorType
-
final
val
outputCol: Param[String]
- Attributes
- protected
- Definition Classes
- HasOutputAnnotationCol
-
lazy val
params: Array[Param[_]]
- Definition Classes
- Params
-
val
positiveMultiplier: DoubleParam
Multiplier for positive sentiments (Default:
1.0
) -
val
reverseMultiplier: DoubleParam
Multiplier for revert sentiments (Default:
-1.0
) -
def
save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @Since( "1.6.0" ) @throws( ... )
-
final
def
set(paramPair: ParamPair[_]): SentimentDetector.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set(param: String, value: Any): SentimentDetector.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set[T](param: Param[T], value: T): SentimentDetector.this.type
- Definition Classes
- Params
-
def
setDecrementMultiplier(v: Double): SentimentDetector.this.type
Multiplier for decrement sentiments (Default:
-2.0
) -
final
def
setDefault(paramPairs: ParamPair[_]*): SentimentDetector.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
setDefault[T](param: Param[T], value: T): SentimentDetector.this.type
- Attributes
- protected[org.apache.spark.ml]
- Definition Classes
- Params
-
def
setDictionary(path: String, delimiter: String, readAs: Format, options: Map[String, String] = Map("format" -> "text")): SentimentDetector.this.type
Delimited file with a list sentiment tags per word.
Delimited file with a list sentiment tags per word. Requires 'delimiter' in options. Dictionary needs 'delimiter' in order to separate words from sentiment tags
-
def
setDictionary(value: ExternalResource): SentimentDetector.this.type
Delimited file with a list sentiment tags per word.
Delimited file with a list sentiment tags per word. Requires 'delimiter' in options. Dictionary needs 'delimiter' in order to separate words from sentiment tags
-
def
setEnableScore(v: Boolean): SentimentDetector.this.type
If true, score will show as the double value, else will output string
"positive"
or"negative"
(Default:false
) -
def
setIncrementMultiplier(v: Double): SentimentDetector.this.type
Multiplier for increment sentiments (Default:
2.0
) -
final
def
setInputCols(value: String*): SentimentDetector.this.type
- Definition Classes
- HasInputAnnotationCols
-
def
setInputCols(value: Array[String]): SentimentDetector.this.type
Overrides required annotators column if different than default
Overrides required annotators column if different than default
- Definition Classes
- HasInputAnnotationCols
-
def
setLazyAnnotator(value: Boolean): SentimentDetector.this.type
- Definition Classes
- CanBeLazy
-
def
setNegativeMultiplier(v: Double): SentimentDetector.this.type
Multiplier for negative sentiments (Default:
-1.0
) -
final
def
setOutputCol(value: String): SentimentDetector.this.type
Overrides annotation column name when transforming
Overrides annotation column name when transforming
- Definition Classes
- HasOutputAnnotationCol
-
def
setPositiveMultiplier(v: Double): SentimentDetector.this.type
Multiplier for positive sentiments (Default:
1.0
) -
def
setReverseMultiplier(v: Double): SentimentDetector.this.type
Multiplier for revert sentiments (Default:
-1.0
) -
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
-
def
train(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): SentimentDetectorModel
- Definition Classes
- SentimentDetector → AnnotatorApproach
-
final
def
transformSchema(schema: StructType): StructType
requirement for pipeline transformation validation.
requirement for pipeline transformation validation. It is called on fit()
- Definition Classes
- AnnotatorApproach → PipelineStage
-
def
transformSchema(schema: StructType, logging: Boolean): StructType
- Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
-
val
uid: String
- Definition Classes
- SentimentDetector → Identifiable
-
def
validate(schema: StructType): Boolean
takes a Dataset and checks to see if all the required annotation types are present.
takes a Dataset and checks to see if all the required annotation types are present.
- schema
to be validated
- returns
True if all the required types are present, else false
- Attributes
- protected
- Definition Classes
- AnnotatorApproach
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
def
write: MLWriter
- Definition Classes
- DefaultParamsWritable → MLWritable
Inherited from AnnotatorApproach[SentimentDetectorModel]
Inherited from CanBeLazy
Inherited from DefaultParamsWritable
Inherited from MLWritable
Inherited from HasOutputAnnotatorType
Inherited from HasOutputAnnotationCol
Inherited from HasInputAnnotationCols
Inherited from Estimator[SentimentDetectorModel]
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.
Annotator types
Required input and expected output annotator types