Description
This model, imported from Hugging Face, was fine-tuned on the MIM-GOLD-NER dataset for the Icelandic language, leveraging Roberta
embeddings and using RobertaForTokenClassification
for NER purposes.
Predicted Entities
Date
, Location
, Miscellaneous
, Money
, Organization
, Percent
, Person
, Time
How to use
documentAssembler = DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")
sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")\
.setInputCols(["document"])\
.setOutputCol("sentence")
tokenizer = Tokenizer()\
.setInputCols(["sentence"])\
.setOutputCol("token")
tokenClassifier = RoBertaForTokenClassification.pretrained("roberta_token_classifier_icelandic_ner", "is"))\
.setInputCols(["sentence",'token'])\
.setOutputCol("ner")
ner_converter = NerConverter()\
.setInputCols(["sentence", "token", "ner"])\
.setOutputCol("ner_chunk")
nlpPipeline = Pipeline(stages=[documentAssembler, sentenceDetector, tokenizer, tokenClassifier, ner_converter])
empty_data = spark.createDataFrame([[""]]).toDF("text")
model = nlpPipeline.fit(empty_data)
text = """Ég heiti Peter Fergusson. Ég hef búið í New York síðan í október 2011 og unnið hjá Tesla Motor og þénað 100K $ á ári."""
result = model.transform(spark.createDataFrame([[text]]).toDF("text"))
val documentAssembler = DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")
.setInputCols(Array("document"))
.setOutputCol("sentence")
val tokenizer = Tokenizer()
.setInputCols(Array("sentence"))
.setOutputCol("token")
val tokenClassifier = RoBertaForTokenClassification.pretrained("roberta_token_classifier_icelandic_ner", "is"))
.setInputCols(Array("sentence","token"))
.setOutputCol("ner")
ner_converter = NerConverter()
.setInputCols(Array("sentence", "token", "ner"))
.setOutputCol("ner_chunk")
val pipeline = new Pipeline().setStages(Array(documentAssembler, sentenceDetector, tokenizer, tokenClassifier, ner_converter))
val example = Seq.empty["Ég heiti Peter Fergusson. Ég hef búið í New York síðan í október 2011 og unnið hjá Tesla Motor og þénað 100K $ á ári."].toDS.toDF("text")
val result = pipeline.fit(example).transform(example)
import nlu
nlu.load("is.ner").predict("""Ég heiti Peter Fergusson. Ég hef búið í New York síðan í október 2011 og unnið hjá Tesla Motor og þénað 100K $ á ári.""")
Results
+----------------+------------+
|chunk |ner_label |
+----------------+------------+
|Peter Fergusson |Person |
|New York |Location |
|október 2011 |Date |
|Tesla Motor |Organization|
|100K $ |Money |
+----------------+------------+
Model Information
Model Name: | roberta_token_classifier_icelandic_ner |
Compatibility: | Spark NLP 3.3.2+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [sentence, token] |
Output Labels: | [ner] |
Language: | is |
Case sensitive: | true |
Max sentense length: | 256 |
Data Source
https://huggingface.co/m3hrdadfi/icelandic-ner-roberta
Benchmarking
label score
Macro-F1-Score 0.957209
Micro-F1-Score 0.951866