Description
-
This model is imported from
Hugging Face
. -
It’s been trained using
xlm_roberta_large
fine-tuned model on 10 African languages (Amharic, Hausa, Igbo, Kinyarwanda, Luganda, Nigerian, Pidgin, Swahilu, Wolof, and Yorùbá).
Predicted Entities
DATE
, LOC
, PER
, ORG
Live Demo Open in Colab Download Copy S3 URI
How to use
documentAssembler = DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")
sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")\
.setInputCols(["document"])\
.setOutputCol("sentence")
tokenizer = Tokenizer()\
.setInputCols(["sentence"])\
.setOutputCol("token")
tokenClassifier = XlmRoBertaForTokenClassification.pretrained("xlm_roberta_large_token_classifier_masakhaner", "xx"))\
.setInputCols(["sentence",'token'])\
.setOutputCol("ner")
ner_converter = NerConverter()\
.setInputCols(["sentence", "token", "ner"])\
.setOutputCol("ner_chunk")
nlpPipeline = Pipeline(stages=[documentAssembler, sentenceDetector, tokenizer, tokenClassifier, ner_converter])
empty_data = spark.createDataFrame([[""]]).toDF("text")
model = nlpPipeline.fit(empty_data)
text = """አህመድ ቫንዳ ከ3-10-2000 ጀምሮ በአዲስ አበባ ኖሯል።"""
result = model.transform(spark.createDataFrame([[text]]).toDF("text"))
val documentAssembler = DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")
.setInputCols(Array("document"))
.setOutputCol("sentence")
val tokenizer = Tokenizer()
.setInputCols(Array("sentence"))
.setOutputCol("token")
val tokenClassifier = XlmRoBertaForTokenClassification.pretrained("xlm_roberta_large_token_classifier_masakhaner", "xx"))
.setInputCols(Array("sentence","token"))
.setOutputCol("ner")
ner_converter = NerConverter()
.setInputCols(Array("sentence", "token", "ner"))
.setOutputCol("ner_chunk")
val pipeline = new Pipeline().setStages(Array(documentAssembler, sentenceDetector, tokenizer, tokenClassifier, ner_converter))
val example = Seq.empty["አህመድ ቫንዳ ከ3-10-2000 ጀምሮ በአዲስ አበባ ኖሯል።"].toDS.toDF("text")
val result = pipeline.fit(example).transform(example)
import nlu
nlu.load("xx.ner.masakhaner").predict("""አህመድ ቫንዳ ከ3-10-2000 ጀምሮ በአዲስ አበባ ኖሯል።""")
Results
+----------------+---------+
|chunk |ner_label|
+----------------+---------+
|አህመድ ቫንዳ |PER |
|ከ3-10-2000 ጀምሮ|DATE |
|በአዲስ አበባ |LOC |
+----------------+---------+
Model Information
Model Name: | xlm_roberta_large_token_classifier_masakhaner |
Compatibility: | Spark NLP 3.3.2+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [sentence, token] |
Output Labels: | [ner] |
Language: | xx |
Case sensitive: | true |
Max sentense length: | 256 |
Data Source
https://huggingface.co/Davlan/xlm-roberta-large-masakhaner
Benchmarking
language: F1-score:
-------- --------
amh 75.76
hau 91.75
ibo 86.26
kin 76.38
lug 84.64
luo 80.65
pcm 89.55
swa 89.48
wol 70.70
yor 82.05
PREVIOUSIcelandic NER Model