Description
This model was imported from Hugging Face
and it’s been fine-tuned for traditional Chinese language, leveraging Bert
embeddings and BertForTokenClassification
for NER purposes.
Predicted Entities
CARDINAL
, DATE
, EVENT
, FAC
, GPE
, LANGUAGE
, LAW
, LOC
, MONEY
, NORP
, ORDINAL
, ORG
, PERCENT
, PERSON
, PRODUCT
, QUANTITY
, TIME
, WORK_OF_ART
How to use
documentAssembler = DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")
sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")\
.setInputCols(["document"])\
.setOutputCol("sentence")
tokenizer = Tokenizer()\
.setInputCols(["sentence"])\
.setOutputCol("token")
tokenClassifier = BertForTokenClassification.pretrained("bert_token_classifier_chinese_ner", "zh"))\
.setInputCols(["sentence",'token'])\
.setOutputCol("ner")
ner_converter = NerConverter()\
.setInputCols(["sentence", "token", "ner"])\
.setOutputCol("ner_chunk")
nlpPipeline = Pipeline(stages=[documentAssembler, sentenceDetector, tokenizer, tokenClassifier, ner_converter])
empty_data = spark.createDataFrame([[""]]).toDF("text")
model = nlpPipeline.fit(empty_data)
text = """我是莎拉,我从 1999 年 11 月 2 日。开始在斯图加特的梅赛德斯-奔驰公司工作。"""
result = model.transform(spark.createDataFrame([[text]]).toDF("text"))
val documentAssembler = DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")
.setInputCols(Array("document"))
.setOutputCol("sentence")
val tokenizer = Tokenizer()
.setInputCols(Array("sentence"))
.setOutputCol("token")
val tokenClassifier = BertForTokenClassification.pretrained("bert_token_classifier_chinese_ner", "zh"))
.setInputCols(Array("sentence","token"))
.setOutputCol("ner")
ner_converter = NerConverter()
.setInputCols(Array("sentence", "token", "ner"))
.setOutputCol("ner_chunk")
val pipeline = new Pipeline().setStages(Array(documentAssembler, sentenceDetector, tokenizer, tokenClassifier, ner_converter))
val example = Seq.empty["我是莎拉,我从 1999 年 11 月 2 日。开始在斯图加特的梅赛德斯-奔驰公司工作。"].toDS.toDF("text")
val result = pipeline.fit(example).transform(example)
import nlu
nlu.load("zh.ner.bert_token").predict("""我是莎拉,我从 1999 年 11 月 2 日。开始在斯图加特的梅赛德斯-奔驰公司工作。""")
Results
+-----------------+---------+
|chunk |ner_label|
+-----------------+---------+
|莎拉 |PERSON |
|1999 年 11 月 2 |DATE |
|斯图加特 |GPE |
|梅赛德斯-奔驰公司 |ORG |
+-----------------+---------+
Model Information
Model Name: | bert_token_classifier_chinese_ner |
Compatibility: | Spark NLP 3.3.2+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [sentence, token] |
Output Labels: | [ner] |
Language: | zh |
Case sensitive: | true |
Max sentense length: | 256 |
Data Source
https://huggingface.co/ckiplab/bert-base-chinese-ner
Benchmarking
label score
f1 0.8118