Japanese BertForTokenClassification Cased model (from jurabi)

Description

Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. bert-ner-japanese is a Japanese model originally trained by jurabi.

Predicted Entities

イベント名, その他の組織名, 施設名, 製品名, 法人名, 人名, 地名, 政治的組織名

Download Copy S3 URI

How to use

documentAssembler = DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("document")

tokenizer = Tokenizer() \
    .setInputCols("document") \
    .setOutputCol("token")

tokenClassifier = BertForTokenClassification.pretrained("bert_token_classifier_ner_japanese","ja") \
    .setInputCols(["document", "token"]) \
    .setOutputCol("ner")

pipeline = Pipeline(stages=[documentAssembler, tokenizer, tokenClassifier])

data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")

result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
    .setInputCol("text")
    .setOutputCol("document")

val tokenizer = new Tokenizer()
    .setInputCols("document")
    .setOutputCol("token")

val tokenClassifier = BertForTokenClassification.pretrained("bert_token_classifier_ner_japanese","ja")
    .setInputCols(Array("document", "token"))
    .setOutputCol("ner")

val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, tokenClassifier))

val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")

val result = pipeline.fit(data).transform(data)

Model Information

Model Name: bert_token_classifier_ner_japanese
Compatibility: Spark NLP 4.2.4+
License: Open Source
Edition: Official
Input Labels: [document, token]
Output Labels: [class]
Language: ja
Size: 415.2 MB
Case sensitive: true
Max sentence length: 256

References

  • https://huggingface.co/jurabi/bert-ner-japanese
  • https://github.com/stockmarkteam/ner-wikipedia-dataset
  • https://github.com/jurabiinc/bert-ner-japanese
  • https://creativecommons.org/licenses/by-sa/3.0/