German BertForTokenClassification Cased model (from Sahajtomar)

Description

Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. NER_legal_de is a German model originally trained by Sahajtomar.

Predicted Entities

UN, ST, VO, VS, ORG, STR, RS, LIT, PER, GRT, LD, INN, VT, AN, EUN, MRK, RR, GS, LDS

Download Copy S3 URI

How to use

documentAssembler = DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("document")

tokenizer = Tokenizer() \
    .setInputCols("document") \
    .setOutputCol("token")

tokenClassifier = BertForTokenClassification.pretrained("bert_token_classifier_ner_legal","de") \
    .setInputCols(["document", "token"]) \
    .setOutputCol("ner")

pipeline = Pipeline(stages=[documentAssembler, tokenizer, tokenClassifier])

data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")

result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
    .setInputCol("text")
    .setOutputCol("document")

val tokenizer = new Tokenizer()
    .setInputCols("document")
    .setOutputCol("token")

val tokenClassifier = BertForTokenClassification.pretrained("bert_token_classifier_ner_legal","de")
    .setInputCols(Array("document", "token"))
    .setOutputCol("ner")

val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, tokenClassifier))

val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")

val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("de.ner.bert.legal").predict("""PUT YOUR STRING HERE""")

Model Information

Model Name: bert_token_classifier_ner_legal
Compatibility: Spark NLP 4.2.4+
License: Open Source
Edition: Official
Input Labels: [document, token]
Output Labels: [class]
Language: de
Size: 1.3 GB
Case sensitive: true
Max sentence length: 256

References

  • https://huggingface.co/Sahajtomar/NER_legal_de