Description
Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. bert-restore-punctuation-ptbr
is a Portuguese model originally trained by dominguesm
.
Predicted Entities
,O
, ,U
, OO
, :O
, ;O
, .O
, ?O
, ?U
, OU
, !U
, !O
, -O
, :U
, .U
, 'O
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
tokenClassifier = BertForTokenClassification.pretrained("bert_token_classifier_restore_punctuation_ptbr","pt") \
.setInputCols(["document", "token"]) \
.setOutputCol("ner")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, tokenClassifier])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val tokenClassifier = BertForTokenClassification.pretrained("bert_token_classifier_restore_punctuation_ptbr","pt")
.setInputCols(Array("document", "token"))
.setOutputCol("ner")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, tokenClassifier))
val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("pt.ner.bert.by_dominguesm").predict("""PUT YOUR STRING HERE""")
Model Information
Model Name: | bert_token_classifier_restore_punctuation_ptbr |
Compatibility: | Spark NLP 4.2.4+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [document, token] |
Output Labels: | [class] |
Language: | pt |
Size: | 406.5 MB |
Case sensitive: | true |
Max sentence length: | 256 |
References
- https://huggingface.co/dominguesm/bert-restore-punctuation-ptbr
- https://wandb.ai/dominguesm/RestorePunctuationPTBR
- https://github.com/DominguesM/respunct
- https://github.com/esdurmus/Wikilingua
- https://paperswithcode.com/sota?task=named-entity-recognition&dataset=wiki_lingua