Description
Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. bert-restore-punctuation-ptbr is a Portuguese model originally trained by dominguesm.
Predicted Entities
,O, ,U, OO, :O, ;O, .O, ?O, ?U, OU, !U, !O, -O, :U, .U, 'O
How to use
documentAssembler = DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("document")
tokenizer = Tokenizer() \
    .setInputCols("document") \
    .setOutputCol("token")
tokenClassifier = BertForTokenClassification.pretrained("bert_token_classifier_restore_punctuation_ptbr","pt") \
    .setInputCols(["document", "token"]) \
    .setOutputCol("ner")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, tokenClassifier])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
    .setInputCol("text")
    .setOutputCol("document")
val tokenizer = new Tokenizer()
    .setInputCols("document")
    .setOutputCol("token")
val tokenClassifier = BertForTokenClassification.pretrained("bert_token_classifier_restore_punctuation_ptbr","pt")
    .setInputCols(Array("document", "token"))
    .setOutputCol("ner")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, tokenClassifier))
val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("pt.ner.bert.by_dominguesm").predict("""PUT YOUR STRING HERE""")
Model Information
| Model Name: | bert_token_classifier_restore_punctuation_ptbr | 
| Compatibility: | Spark NLP 4.2.4+ | 
| License: | Open Source | 
| Edition: | Official | 
| Input Labels: | [document, token] | 
| Output Labels: | [class] | 
| Language: | pt | 
| Size: | 406.5 MB | 
| Case sensitive: | true | 
| Max sentence length: | 256 | 
References
- https://huggingface.co/dominguesm/bert-restore-punctuation-ptbr
- https://wandb.ai/dominguesm/RestorePunctuationPTBR
- https://github.com/DominguesM/respunct
- https://github.com/esdurmus/Wikilingua
- https://paperswithcode.com/sota?task=named-entity-recognition&dataset=wiki_lingua