Description
Pretrained BERT Embedding model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. legal-bert-small-uncased
is a English model originally trained by nlpaueb
.
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
embeddings = BertEmbeddings.pretrained("bert_embeddings_legal_bert_small_uncased","en") \
.setInputCols(["document", "token"]) \
.setOutputCol("embeddings")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, embeddings])
data = spark.createDataFrame([["I love Spark NLP"]]).toDF("text")
result = pipeline.fit(data).transform(data)
import nlu
nlu.load("en.embed.legal_bert_small_uncased").predict("""I love Spark NLP""")
Model Information
Model Name: | bert_embeddings_legal_bert_small_uncased |
Compatibility: | Spark NLP 4.2.7+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [sentence] |
Output Labels: | [bert_sentence] |
Language: | en |
Size: | 131.8 MB |
Case sensitive: | false |
Max sentence length: | 128 |
References
- https://huggingface.co/nlpaueb/legal-bert-small-uncased
- https://www.sec.gov/edgar.shtml
- https://twitter.com/KiddoThe2B
- http://nlp.cs.aueb.gr
- https://archive.org/details/legal_bert_fp
- https://aclanthology.org/2020.findings-emnlp.261
- http://hudoc.echr.coe.int/eng
- http://www.legislation.gov.uk
- https://www.tensorflow.org/tfrc
- https://edu.google.com/programs/credits/research
- https://case.law
- https://iliaschalkidis.github.io
- https://github.com/iliaschalkidis
- https://github.com/google-research/bert
- http://eur-lex.europa.eu