English Legal BERT Embedding Cased model

Description

Pretrained BERT Embedding model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. legalbert is a English model originally trained by zlucia.

Download Copy S3 URI

How to use

documentAssembler = DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("document")

tokenizer = Tokenizer() \
    .setInputCols("document") \
    .setOutputCol("token")
  
embeddings = BertEmbeddings.pretrained("bert_embeddings_legalbert","en") \
    .setInputCols(["document", "token"]) \
    .setOutputCol("embeddings")
    
pipeline = Pipeline(stages=[documentAssembler, tokenizer, embeddings])

data = spark.createDataFrame([["I love Spark NLP"]]).toDF("text")

result = pipeline.fit(data).transform(data)
import nlu
nlu.load("en.embed.legalbert.legal.by_zlucia").predict("""I love Spark NLP""")

Model Information

Model Name: bert_embeddings_legalbert
Compatibility: Spark NLP 4.2.7+
License: Open Source
Edition: Official
Input Labels: [sentence]
Output Labels: [bert_sentence]
Language: en
Size: 409.6 MB
Case sensitive: true
Max sentence length: 128

References

  • https://huggingface.co/zlucia/legalbert
  • https://case.law/
  • https://arxiv.org/abs/2104.08671
  • https://github.com/reglab/casehold