Description
Pretrained RobertaForTokenClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. bertin-base-pos-conll2002-es
is a Spanish model originally trained by bertin-project
.
Predicted Entities
DA
, VAM
, I
, VSM
, PP
, VSS
, DI
, AQ
, Y
, VMN
, Fit
, Fg
, Fia
, Fpa
, Fat
, VSN
, Fpt
, DD
, VAP
, SP
, NP
, Fh
, VAI
, CC
, Fd
, VMG
, NC
, PX
, DE
, Fz
, PN
, Fx
, Faa
, Fs
, Fe
, VSP
, DP
, VAS
, VSG
, PT
, Ft
, VAN
, PI
, P0
, RG
, RN
, CS
, DN
, VMI
, Fp
, Fc
, PR
, VSI
, AO
, VMM
, PD
, VMS
, DT
, Z
, VMP
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
tokenClassifier = RobertaForTokenClassification.pretrained("roberta_token_classifier_bertin_base_pos_conll2002","es") \
.setInputCols(["document", "token"]) \
.setOutputCol("ner")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, tokenClassifier])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val tokenClassifier = RobertaForTokenClassification.pretrained("roberta_token_classifier_bertin_base_pos_conll2002","es")
.setInputCols(Array("document", "token"))
.setOutputCol("ner")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, tokenClassifier))
val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
Model Information
Model Name: | roberta_token_classifier_bertin_base_pos_conll2002 |
Compatibility: | Spark NLP 4.3.0+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [document, token] |
Output Labels: | [ner] |
Language: | es |
Size: | 426.4 MB |
Case sensitive: | true |
Max sentence length: | 128 |
References
- https://huggingface.co/bertin-project/bertin-base-pos-conll2002-es