Catalan RobertaForTokenClassification Cased model (from softcatala)

Description

Pretrained RobertaForTokenClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. fullstop-catalan-punctuation-prediction is a Catalan model originally trained by softcatala.

Predicted Entities

., ?, -, :, ,, 0

Download Copy S3 URI

How to use

documentAssembler = DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("document")

tokenizer = Tokenizer() \
    .setInputCols("document") \
    .setOutputCol("token")

tokenClassifier = RobertaForTokenClassification.pretrained("roberta_token_classifier_fullstop_catalan_punctuation_prediction","ca") \
    .setInputCols(["document", "token"]) \
    .setOutputCol("ner")

pipeline = Pipeline(stages=[documentAssembler, tokenizer, tokenClassifier])

data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")

result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
    .setInputCol("text")
    .setOutputCol("document")

val tokenizer = new Tokenizer()
    .setInputCols("document")
    .setOutputCol("token")

val tokenClassifier = RobertaForTokenClassification.pretrained("roberta_token_classifier_fullstop_catalan_punctuation_prediction","ca")
    .setInputCols(Array("document", "token"))
    .setOutputCol("ner")

val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, tokenClassifier))

val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")

val result = pipeline.fit(data).transform(data)

Model Information

Model Name: roberta_token_classifier_fullstop_catalan_punctuation_prediction
Compatibility: Spark NLP 4.3.0+
License: Open Source
Edition: Official
Input Labels: [document, token]
Output Labels: [ner]
Language: ca
Size: 457.5 MB
Case sensitive: true
Max sentence length: 128

References

  • https://huggingface.co/softcatala/fullstop-catalan-punctuation-prediction
  • https://github.com/oliverguhr/fullstop-deep-punctuation-prediction