Description
Pretrained RobertaForTokenClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. roberta-large-ontonotes5
is a Latin model originally trained by tner
.
Predicted Entities
NORP
, FAC
, QUANTITY
, LOC
, EVENT
, CARDINAL
, LANGUAGE
, GPE
, ORG
, TIME
, PERSON
, WORK_OF_ART
, DATE
, PRODUCT
, PERCENT
, LAW
, ORDINAL
, MONEY
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
tokenClassifier = RobertaForTokenClassification.pretrained("roberta_token_classifier_large_ontonotes5","la") \
.setInputCols(["document", "token"]) \
.setOutputCol("ner")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, tokenClassifier])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val tokenClassifier = RobertaForTokenClassification.pretrained("roberta_token_classifier_large_ontonotes5","la")
.setInputCols(Array("document", "token"))
.setOutputCol("ner")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, tokenClassifier))
val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
Model Information
Model Name: | roberta_token_classifier_large_ontonotes5 |
Compatibility: | Spark NLP 4.3.0+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [document, token] |
Output Labels: | [ner] |
Language: | la |
Size: | 1.3 GB |
Case sensitive: | true |
Max sentence length: | 128 |
References
- https://huggingface.co/tner/roberta-large-ontonotes5
- https://github.com/asahi417/tner
- https://github.com/asahi417/tner
- https://aclanthology.org/2021.eacl-demos.7/
- https://paperswithcode.com/sota?task=Token+Classification&dataset=tner%2Fontonotes5