Recognize Entities DL Pipeline for German - Medium

Description

The entity_recognizer_md is a pretrained pipeline that we can use to process text with a simple pipeline that performs basic processing steps. It performs most of the common text processing tasks on your dataframe

Predicted Entities

Download Copy S3 URI

How to use

from sparknlp.pretrained import PretrainedPipelinein
pipeline = PretrainedPipeline('entity_recognizer_md', lang = 'de')
annotations =  pipeline.fullAnnotate(""Hallo aus John Snow Labs! "")[0]
annotations.keys()
val pipeline = new PretrainedPipeline("entity_recognizer_md", lang = "de")
val result = pipeline.fullAnnotate("Hallo aus John Snow Labs! ")(0)
import nlu
text = [""Hallo aus John Snow Labs! ""]
result_df = nlu.load('de.ner.recognizer').predict(text)
result_df

Results

Results


|    | document                       | sentence                      | token                                     | embeddings                   | ner                                   | entities            |
|---:|:-------------------------------|:------------------------------|:------------------------------------------|:-----------------------------|:--------------------------------------|:--------------------|
|  0 | ['Hallo aus John Snow Labs! '] | ['Hallo aus John Snow Labs!'] | ['Hallo', 'aus', 'John', 'Snow', 'Labs!'] | [[0.5910000205039978,.,...]] | ['O', 'O', 'I-PER', 'I-PER', 'I-PER'] | ['John Snow Labs!'] |


{:.model-param}

Model Information

Model Name: entity_recognizer_md
Type: pipeline
Compatibility: Spark NLP 4.4.2+
License: Open Source
Edition: Official
Language: de
Size: 461.8 MB

Included Models

  • DocumentAssembler
  • SentenceDetector
  • TokenizerModel
  • WordEmbeddingsModel
  • NerDLModel
  • NerConverter