Description
The entity_recognizer_md is a pretrained pipeline that we can use to process text with a simple pipeline that performs basic processing steps. It performs most of the common text processing tasks on your dataframe
Predicted Entities
How to use
from sparknlp.pretrained import PretrainedPipelinein
pipeline = PretrainedPipeline('entity_recognizer_md', lang = 'es')
annotations = pipeline.fullAnnotate(""Hola de John Snow Labs! "")[0]
annotations.keys()
val pipeline = new PretrainedPipeline("entity_recognizer_md", lang = "es")
val result = pipeline.fullAnnotate("Hola de John Snow Labs! ")(0)
import nlu
text = [""Hola de John Snow Labs! ""]
result_df = nlu.load('es.ner.md').predict(text)
result_df
Results
Results
| | document | sentence | token | embeddings | ner | entities |
|---:|:-----------------------------|:----------------------------|:----------------------------------------|:-----------------------------|:--------------------------------------|:--------------------|
| 0 | ['Hola de John Snow Labs! '] | ['Hola de John Snow Labs!'] | ['Hola', 'de', 'John', 'Snow', 'Labs!'] | [[0.5123000144958496,.,...]] | ['O', 'O', 'B-PER', 'I-PER', 'I-PER'] | ['John Snow Labs!'] |
{:.model-param}
Model Information
Model Name: | entity_recognizer_md |
Type: | pipeline |
Compatibility: | Spark NLP 4.4.2+ |
License: | Open Source |
Edition: | Official |
Language: | es |
Size: | 461.9 MB |
Included Models
- DocumentAssembler
- SentenceDetector
- TokenizerModel
- WordEmbeddingsModel
- NerDLModel
- NerConverter