Explain Document Pipeline for Russian

Description

The explain_document_sm is a pretrained pipeline that we can use to process text with a simple pipeline that performs basic processing steps. It performs most of the common text processing tasks on your dataframe

Predicted Entities

Download Copy S3 URI

How to use

from sparknlp.pretrained import PretrainedPipelinein
pipeline = PretrainedPipeline('explain_document_sm', lang = 'ru')
annotations =  pipeline.fullAnnotate(""Здравствуйте из Джона Снежных Лабораторий! "")[0]
annotations.keys()
val pipeline = new PretrainedPipeline("explain_document_sm", lang = "ru")
val result = pipeline.fullAnnotate("Здравствуйте из Джона Снежных Лабораторий! ")(0)
import nlu
text = [""Здравствуйте из Джона Снежных Лабораторий! ""]
result_df = nlu.load('ru.explain').predict(text)
result_df

Results

Results


|    | document                                        | sentence                                       | token                                                      | lemma                                                      | pos                                        | embeddings                   | ner                                   | entities                       |
|---:|:------------------------------------------------|:-----------------------------------------------|:-----------------------------------------------------------|:-----------------------------------------------------------|:-------------------------------------------|:-----------------------------|:--------------------------------------|:-------------------------------|
|  0 | ['Здравствуйте из Джона Снежных Лабораторий! '] | ['Здравствуйте из Джона Снежных Лабораторий!'] | ['Здравствуйте', 'из', 'Джона', 'Снежных', 'Лабораторий!'] | ['здравствовать', 'из', 'Джон', 'Снежных', 'Лабораторий!'] | ['NOUN', 'ADP', 'PROPN', 'PROPN', 'PROPN'] | [[0.0, 0.0, 0.0, 0.0,.,...]] | ['O', 'O', 'B-PER', 'I-PER', 'I-PER'] | ['Джона Снежных Лабораторий!'] |


{:.model-param}

Model Information

Model Name: explain_document_sm
Type: pipeline
Compatibility: Spark NLP 4.4.2+
License: Open Source
Edition: Official
Language: ru
Size: 170.3 MB

Included Models

  • DocumentAssembler
  • SentenceDetector
  • TokenizerModel
  • LemmatizerModel
  • PerceptronModel
  • WordEmbeddingsModel
  • NerDLModel
  • NerConverter