Explain Document Pipeline for Swedish

Description

The explain_document_sm is a pretrained pipeline that we can use to process text with a simple pipeline that performs basic processing steps. It performs most of the common text processing tasks on your dataframe

Predicted Entities

Download Copy S3 URI

How to use

from sparknlp.pretrained import PretrainedPipelinein
pipeline = PretrainedPipeline('explain_document_sm', lang = 'sv')
annotations =  pipeline.fullAnnotate(""Hej från John Snow Labs! "")[0]
annotations.keys()
val pipeline = new PretrainedPipeline("explain_document_sm", lang = "sv")
val result = pipeline.fullAnnotate("Hej från John Snow Labs! ")(0)
import nlu
text = [""Hej från John Snow Labs! ""]
result_df = nlu.load('sv.explain').predict(text)
result_df

Results

Results


|    | document                      | sentence                     | token                                    | lemma                                    | pos                                        | embeddings                   | ner                                   | entities            |
|---:|:------------------------------|:-----------------------------|:-----------------------------------------|:-----------------------------------------|:-------------------------------------------|:-----------------------------|:--------------------------------------|:--------------------|
|  0 | ['Hej från John Snow Labs! '] | ['Hej från John Snow Labs!'] | ['Hej', 'från', 'John', 'Snow', 'Labs!'] | ['Hej', 'från', 'John', 'Snow', 'Labs!'] | ['NOUN', 'ADP', 'PROPN', 'PROPN', 'PROPN'] | [[0.0306969992816448,.,...]] | ['O', 'O', 'B-PER', 'I-PER', 'I-PER'] | ['John Snow Labs!'] |


{:.model-param}

Model Information

Model Name: explain_document_sm
Type: pipeline
Compatibility: Spark NLP 4.4.2+
License: Open Source
Edition: Official
Language: sv
Size: 176.0 MB

Included Models

  • DocumentAssembler
  • SentenceDetector
  • TokenizerModel
  • LemmatizerModel
  • PerceptronModel
  • WordEmbeddingsModel
  • NerDLModel
  • NerConverter