BERT Embeddings (Base Cased)

Description

This model contains a deep bidirectional transformer trained on Wikipedia and the BookCorpus. The details are described in the paper “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding”.

Predicted Entities

Download Copy S3 URI

How to use

...
embeddings = BertEmbeddings.pretrained("bert_base_cased", "en") \
.setInputCols("sentence", "token") \
.setOutputCol("embeddings")
nlp_pipeline = Pipeline(stages=[document_assembler, sentence_detector, tokenizer, embeddings])
pipeline_model = nlp_pipeline.fit(spark.createDataFrame([[""]]).toDF("text"))
result = pipeline_model.transform(spark.createDataFrame([['I love NLP']], ["text"]))
...
val embeddings = BertEmbeddings.pretrained("bert_base_cased", "en")
.setInputCols("sentence", "token")
.setOutputCol("embeddings")
val pipeline = new Pipeline().setStages(Array(document_assembler, sentence_detector, tokenizer, embeddings))
val data = Seq("I love NLP").toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu

text = ["I love NLP"]
embeddings_df = nlu.load('en.embed.bert.base_cased').predict(text, output_level='token')
embeddings_df

Results

Results

	token	en_embed_bert_base_cased_embeddings

	I	[0.43879568576812744, -0.40160006284713745, 0....
	love	[0.21737590432167053, -0.3865768313407898, -0....
	NLP	[-0.16226479411125183, -0.053727392107248306, ...



{:.model-param}

Model Information

Model Name: bert_base_cased
Compatibility: Spark NLP 5.0.0+
License: Open Source
Edition: Official
Input Labels: [sentence, token]
Output Labels: [bert]
Language: en
Size: 403.6 MB
Case sensitive: true

References

The model is imported from https://tfhub.dev/google/bert_cased_L-12_H-768_A-12/1