Multilingual XLMRoBerta Embeddings Cased Model

Description

Pretrained XLMRoberta Embeddings model is a multilingual embedding model adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.

Predicted Entities

Download Copy S3 URI

How to use

documentAssembler = DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("document")

tokenizer = Tokenizer() \
    .setInputCols("document") \
    .setOutputCol("token")

embeddings = XlmRoBertaEmbeddings.pretrained("xlmroberta_embeddings_paraphrase_mpnet_base_v2","xx") \
    .setInputCols(["document", "token"]) \
    .setOutputCol("embeddings") \
    .setCaseSensitive(True)

pipeline = Pipeline(stages=[documentAssembler, 
                            tokenizer, 
                            embeddings])

data = spark.createDataFrame([["I love Spark NLP"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler() 
      .setInputCol("text") 
      .setOutputCol("document")
 
val tokenizer = new Tokenizer() 
    .setInputCols("document")
    .setOutputCol("token")

val embeddings = XlmRoBertaEmbeddings.pretrained("xlmroberta_embeddings_paraphrase_mpnet_base_v2", "xx") 
    .setInputCols(Array("document", "token")) 
    .setOutputCol("embeddings")

val pipeline = new Pipeline().setStages(Array(documentAssembler, 
                                              tokenizer, 
                                              embeddings))

val data = Seq("I love Spark NLP").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)

Model Information

Model Name: xlmroberta_embeddings_paraphrase_mpnet_base_v2
Compatibility: Spark NLP 4.4.4+
License: Open Source
Edition: Official
Input Labels: [sentence, token]
Output Labels: [embeddings]
Language: xx
Size: 1.0 GB
Case sensitive: true

References

https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2