Description
Pretrained XlmRobertaForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. verdict-classifier
is a Multilingual model originally trained by saattrupdan
.
Predicted Entities
factual
, misinformation
, other
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
seq_classifier = XlmRoBertaForSequenceClassification.pretrained("xlmroberta_classifier_verdict","xx") \
.setInputCols(["document", "token"]) \
.setOutputCol("class")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, seq_classifier])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCols(Array("text"))
.setOutputCols(Array("document"))
val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val seq_classifier = XlmRoBertaForSequenceClassification.pretrained("xlmroberta_classifier_verdict","xx")
.setInputCols(Array("document", "token"))
.setOutputCol("class")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, seq_classifier))
val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("xx.classify.xlmr_roberta").predict("""PUT YOUR STRING HERE""")
Model Information
Model Name: | xlmroberta_classifier_verdict |
Compatibility: | Spark NLP 5.5.0+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [document, token] |
Output Labels: | [class] |
Language: | xx |
Size: | 982.1 MB |
References
References
- https://huggingface.co/saattrupdan/verdict-classifier