Description
Pretrained XlmRoBertaForTokenClassification, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.xlmroberta_ner_base_finetuned_igbo_finetuned_ner_swahili_pipeline
is a Swahili (macrolanguage) model originally trained by mbeukman.
How to use
pipeline = PretrainedPipeline("xlmroberta_ner_base_finetuned_igbo_finetuned_ner_swahili_pipeline", lang = "sw")
annotations = pipeline.transform(df)
val pipeline = new PretrainedPipeline("xlmroberta_ner_base_finetuned_igbo_finetuned_ner_swahili_pipeline", lang = "sw")
val annotations = pipeline.transform(df)
Model Information
Model Name: | xlmroberta_ner_base_finetuned_igbo_finetuned_ner_swahili_pipeline |
Type: | pipeline |
Compatibility: | Spark NLP 5.5.0+ |
License: | Open Source |
Edition: | Official |
Language: | sw |
Size: | 1.0 GB |
References
https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-igbo-finetuned-ner-swahili
Included Models
- DocumentAssembler
- TokenizerModel
- XlmRoBertaForTokenClassification