com.johnsnowlabs.nlp.annotators.pos.perceptron
PerceptronApproach
Companion object PerceptronApproach
class PerceptronApproach extends AnnotatorApproach[PerceptronModel] with PerceptronTrainingUtils
Trains an averaged Perceptron model to tag words part-of-speech. Sets a POS tag to each word within a sentence.
For pretrained models please see the PerceptronModel.
The training data needs to be in a Spark DataFrame, where the column needs to consist of
Annotations of type POS
. The Annotation
needs to have
member result
set to the POS tag and have a "word"
mapping to its word inside of member
metadata
. This DataFrame for training can easily created by the helper class
POS.
POS().readDataset(spark, datasetPath).selectExpr("explode(tags) as tags").show(false) +---------------------------------------------+ |tags | +---------------------------------------------+ |[pos, 0, 5, NNP, [word -> Pierre], []] | |[pos, 7, 12, NNP, [word -> Vinken], []] | |[pos, 14, 14, ,, [word -> ,], []] | |[pos, 31, 34, MD, [word -> will], []] | |[pos, 36, 39, VB, [word -> join], []] | |[pos, 41, 43, DT, [word -> the], []] | |[pos, 45, 49, NN, [word -> board], []] | ...
For extended examples of usage, see the Examples and PerceptronApproach tests.
Example
import spark.implicits._ import com.johnsnowlabs.nlp.base.DocumentAssembler import com.johnsnowlabs.nlp.annotator.SentenceDetector import com.johnsnowlabs.nlp.annotators.Tokenizer import com.johnsnowlabs.nlp.training.POS import com.johnsnowlabs.nlp.annotators.pos.perceptron.PerceptronApproach import org.apache.spark.ml.Pipeline val documentAssembler = new DocumentAssembler() .setInputCol("text") .setOutputCol("document") val sentence = new SentenceDetector() .setInputCols("document") .setOutputCol("sentence") val tokenizer = new Tokenizer() .setInputCols("sentence") .setOutputCol("token") val datasetPath = "src/test/resources/anc-pos-corpus-small/test-training.txt" val trainingPerceptronDF = POS().readDataset(spark, datasetPath) val trainedPos = new PerceptronApproach() .setInputCols("document", "token") .setOutputCol("pos") .setPosColumn("tags") .fit(trainingPerceptronDF) val pipeline = new Pipeline().setStages(Array( documentAssembler, sentence, tokenizer, trainedPos )) val data = Seq("To be or not to be, is this the question?").toDF("text") val result = pipeline.fit(data).transform(data) result.selectExpr("pos.result").show(false) +--------------------------------------------------+ |result | +--------------------------------------------------+ |[NNP, NNP, CD, JJ, NNP, NNP, ,, MD, VB, DT, CD, .]| +--------------------------------------------------+
- Grouped
- Alphabetic
- By Inheritance
- PerceptronApproach
- PerceptronTrainingUtils
- PerceptronUtils
- AnnotatorApproach
- CanBeLazy
- DefaultParamsWritable
- MLWritable
- HasOutputAnnotatorType
- HasOutputAnnotationCol
- HasInputAnnotationCols
- Estimator
- PipelineStage
- Logging
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
Type Members
-
type
AnnotatorType = String
- Definition Classes
- HasOutputAnnotatorType
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
$[T](param: Param[T]): T
- Attributes
- protected
- Definition Classes
- Params
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
_fit(dataset: Dataset[_], recursiveStages: Option[PipelineModel]): PerceptronModel
- Attributes
- protected
- Definition Classes
- AnnotatorApproach
-
val
ambiguityThreshold: DoubleParam
How much percentage of total amount of words are covered to be marked as frequent (Default:
0.97
) -
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
beforeTraining(spark: SparkSession): Unit
- Definition Classes
- AnnotatorApproach
-
def
buildTagBook(taggedSentences: Array[TaggedSentence], frequencyThreshold: Int, ambiguityThreshold: Double): Map[String, String]
Finds very frequent tags on a word in training, and marks them as non ambiguous based on tune parameters ToDo: Move such parameters to configuration
Finds very frequent tags on a word in training, and marks them as non ambiguous based on tune parameters ToDo: Move such parameters to configuration
- taggedSentences
Takes entire tagged sentences to find frequent tags
- frequencyThreshold
How many times at least a tag on a word to be marked as frequent
- ambiguityThreshold
How much percentage of total amount of words are covered to be marked as frequent
- Definition Classes
- PerceptronTrainingUtils
-
final
def
checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
final
def
clear(param: Param[_]): PerceptronApproach.this.type
- Definition Classes
- Params
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
final
def
copy(extra: ParamMap): Estimator[PerceptronModel]
- Definition Classes
- AnnotatorApproach → Estimator → PipelineStage → Params
-
def
copyValues[T <: Params](to: T, extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
final
def
defaultCopy[T <: Params](extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
val
description: String
Averaged Perceptron model to tag words part-of-speech
Averaged Perceptron model to tag words part-of-speech
- Definition Classes
- PerceptronApproach → AnnotatorApproach
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
explainParam(param: Param[_]): String
- Definition Classes
- Params
-
def
explainParams(): String
- Definition Classes
- Params
-
final
def
extractParamMap(): ParamMap
- Definition Classes
- Params
-
final
def
extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
fit(dataset: Dataset[_]): PerceptronModel
- Definition Classes
- AnnotatorApproach → Estimator
-
def
fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[PerceptronModel]
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" )
-
def
fit(dataset: Dataset[_], paramMap: ParamMap): PerceptronModel
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" )
-
def
fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): PerceptronModel
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" ) @varargs()
-
val
frequencyThreshold: IntParam
How many times at least a tag on a word to be marked as frequent (Default:
20
) -
def
generatesTagBook(dataset: Dataset[_]): Array[TaggedSentence]
Generates TagBook, which holds all the word to tags mapping that are not ambiguous
Generates TagBook, which holds all the word to tags mapping that are not ambiguous
- Definition Classes
- PerceptronTrainingUtils
-
final
def
get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
def
getInputCols: Array[String]
- returns
input annotations columns currently used
- Definition Classes
- HasInputAnnotationCols
-
def
getLazyAnnotator: Boolean
- Definition Classes
- CanBeLazy
-
def
getNIterations: Int
Number of iterations for training.
Number of iterations for training. May improve accuracy but takes longer (Default:
5
) -
final
def
getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
-
final
def
getOutputCol: String
Gets annotation column name going to generate
Gets annotation column name going to generate
- Definition Classes
- HasOutputAnnotationCol
-
def
getParam(paramName: String): Param[Any]
- Definition Classes
- Params
-
final
def
hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
-
def
hasParam(paramName: String): Boolean
- Definition Classes
- Params
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
def
initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
val
inputAnnotatorTypes: Array[AnnotatorType]
Input annotator type: TOKEN, DOCUMENT
Input annotator type: TOKEN, DOCUMENT
- Definition Classes
- PerceptronApproach → HasInputAnnotationCols
-
final
val
inputCols: StringArrayParam
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
final
def
isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
isSet(param: Param[_]): Boolean
- Definition Classes
- Params
-
def
isTraceEnabled(): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
val
lazyAnnotator: BooleanParam
- Definition Classes
- CanBeLazy
-
def
log: Logger
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logName: String
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
msgHelper(schema: StructType): String
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
val
nIterations: IntParam
Number of iterations in training, converges to better accuracy (Default:
5
) -
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
onTrained(model: PerceptronModel, spark: SparkSession): Unit
- Definition Classes
- AnnotatorApproach
-
val
optionalInputAnnotatorTypes: Array[String]
- Definition Classes
- HasInputAnnotationCols
-
val
outputAnnotatorType: AnnotatorType
Output annotator type: POS
Output annotator type: POS
- Definition Classes
- PerceptronApproach → HasOutputAnnotatorType
-
final
val
outputCol: Param[String]
- Attributes
- protected
- Definition Classes
- HasOutputAnnotationCol
-
lazy val
params: Array[Param[_]]
- Definition Classes
- Params
-
val
posCol: Param[String]
Column of Array of POS tags that match tokens
-
def
save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @Since( "1.6.0" ) @throws( ... )
-
final
def
set(paramPair: ParamPair[_]): PerceptronApproach.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set(param: String, value: Any): PerceptronApproach.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set[T](param: Param[T], value: T): PerceptronApproach.this.type
- Definition Classes
- Params
-
def
setAmbiguityThreshold(value: Double): PerceptronApproach.this.type
"How much percentage of total amount of words are covered to be marked as frequent
-
final
def
setDefault(paramPairs: ParamPair[_]*): PerceptronApproach.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
setDefault[T](param: Param[T], value: T): PerceptronApproach.this.type
- Attributes
- protected[org.apache.spark.ml]
- Definition Classes
- Params
-
def
setFrequencyThreshold(value: Int): PerceptronApproach.this.type
"How many times at least a tag on a word to be marked as frequent
-
final
def
setInputCols(value: String*): PerceptronApproach.this.type
- Definition Classes
- HasInputAnnotationCols
-
def
setInputCols(value: Array[String]): PerceptronApproach.this.type
Overrides required annotators column if different than default
Overrides required annotators column if different than default
- Definition Classes
- HasInputAnnotationCols
-
def
setLazyAnnotator(value: Boolean): PerceptronApproach.this.type
- Definition Classes
- CanBeLazy
-
def
setNIterations(value: Int): PerceptronApproach.this.type
Number of iterations for training.
Number of iterations for training. May improve accuracy but takes longer. Default 5.
-
final
def
setOutputCol(value: String): PerceptronApproach.this.type
Overrides annotation column name when transforming
Overrides annotation column name when transforming
- Definition Classes
- HasOutputAnnotationCol
-
def
setPosColumn(value: String): PerceptronApproach.this.type
Column containing an array of POS Tags matching every token on the line.
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
-
def
train(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): PerceptronModel
Trains a model based on a provided CORPUS
Trains a model based on a provided CORPUS
- returns
A trained averaged model
- Definition Classes
- PerceptronApproach → AnnotatorApproach
-
def
trainPerceptron(nIterations: Int, initialModel: TrainingPerceptronLegacy, taggedSentences: Array[TaggedSentence], taggedWordBook: Map[String, String]): AveragedPerceptron
Iterates for training
Iterates for training
- Definition Classes
- PerceptronTrainingUtils
-
final
def
transformSchema(schema: StructType): StructType
requirement for pipeline transformation validation.
requirement for pipeline transformation validation. It is called on fit()
- Definition Classes
- AnnotatorApproach → PipelineStage
-
def
transformSchema(schema: StructType, logging: Boolean): StructType
- Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
-
val
uid: String
- Definition Classes
- PerceptronApproach → Identifiable
-
def
validate(schema: StructType): Boolean
takes a Dataset and checks to see if all the required annotation types are present.
takes a Dataset and checks to see if all the required annotation types are present.
- schema
to be validated
- returns
True if all the required types are present, else false
- Attributes
- protected
- Definition Classes
- AnnotatorApproach
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
def
write: MLWriter
- Definition Classes
- DefaultParamsWritable → MLWritable
Inherited from PerceptronTrainingUtils
Inherited from PerceptronUtils
Inherited from AnnotatorApproach[PerceptronModel]
Inherited from CanBeLazy
Inherited from DefaultParamsWritable
Inherited from MLWritable
Inherited from HasOutputAnnotatorType
Inherited from HasOutputAnnotationCol
Inherited from HasInputAnnotationCols
Inherited from Estimator[PerceptronModel]
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.
Annotator types
Required input and expected output annotator types