class SentenceDetectorDLApproach extends AnnotatorApproach[SentenceDetectorDLModel]
Trains an annotator that detects sentence boundaries using a deep learning approach.
For pretrained models see SentenceDetectorDLModel.
Currently, only the CNN model is supported for training, but in the future the architecture of
the model can be set with setModelArchitecture
.
The default model "cnn"
is based on the paper
Deep-EOS: General-Purpose Neural Networks for Sentence Boundary Detection (2020, Stefan Schweter, Sajawel Ahmed)
using a CNN architecture. We also modified the original implementation a little bit to cover
broken sentences and some impossible end of line chars.
Each extracted sentence can be returned in an Array or exploded to separate rows, if
explodeSentences
is set to true
.
For extended examples of usage, see the Examples and the SentenceDetectorDLSpec.
Example
The training process needs data, where each data point is a sentence.
In this example the train.txt
file has the form of
... Slightly more moderate language would make our present situation – namely the lack of progress – a little easier. His political successors now have great responsibilities to history and to the heritage of values bequeathed to them by Nelson Mandela. ...
where each line is one sentence. Training can then be started like so:
import com.johnsnowlabs.nlp.base.DocumentAssembler import com.johnsnowlabs.nlp.annotators.sentence_detector_dl.SentenceDetectorDLApproach import org.apache.spark.ml.Pipeline val trainingData = spark.read.text("train.txt").toDF("text") val documentAssembler = new DocumentAssembler() .setInputCol("text") .setOutputCol("document") val sentenceDetector = new SentenceDetectorDLApproach() .setInputCols(Array("document")) .setOutputCol("sentences") .setEpochsNumber(100) val pipeline = new Pipeline().setStages(Array(documentAssembler, sentenceDetector)) val model = pipeline.fit(trainingData)
- See also
SentenceDetectorDLModel for pretrained models
SentenceDetector for non deep learning extraction
- Grouped
- Alphabetic
- By Inheritance
- SentenceDetectorDLApproach
- AnnotatorApproach
- CanBeLazy
- DefaultParamsWritable
- MLWritable
- HasOutputAnnotatorType
- HasOutputAnnotationCol
- HasInputAnnotationCols
- Estimator
- PipelineStage
- Logging
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
Type Members
-
type
AnnotatorType = String
- Definition Classes
- HasOutputAnnotatorType
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
$[T](param: Param[T]): T
- Attributes
- protected
- Definition Classes
- Params
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
_fit(dataset: Dataset[_], recursiveStages: Option[PipelineModel]): SentenceDetectorDLModel
- Attributes
- protected
- Definition Classes
- AnnotatorApproach
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
beforeTraining(spark: SparkSession): Unit
- Definition Classes
- AnnotatorApproach
-
final
def
checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
final
def
clear(param: Param[_]): SentenceDetectorDLApproach.this.type
- Definition Classes
- Params
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
final
def
copy(extra: ParamMap): Estimator[SentenceDetectorDLModel]
- Definition Classes
- AnnotatorApproach → Estimator → PipelineStage → Params
-
def
copyValues[T <: Params](to: T, extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
val
customBounds: StringArrayParam
Characters used to explicitly mark sentence bounds (Default: None)
-
final
def
defaultCopy[T <: Params](extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
val
description: String
Trains TensorFlow model for multi-class text classification
Trains TensorFlow model for multi-class text classification
- Definition Classes
- SentenceDetectorDLApproach → AnnotatorApproach
-
val
epochsNumber: IntParam
Maximum number of epochs to train (Default:
5
) -
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
explainParam(param: Param[_]): String
- Definition Classes
- Params
-
def
explainParams(): String
- Definition Classes
- Params
-
def
explodeSentences: BooleanParam
A flag indicating whether to split sentences into different Dataset rows.
A flag indicating whether to split sentences into different Dataset rows. Useful for higher parallelism in fat rows (Default:
false
) -
final
def
extractParamMap(): ParamMap
- Definition Classes
- Params
-
final
def
extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
fit(dataset: Dataset[_]): SentenceDetectorDLModel
- Definition Classes
- AnnotatorApproach → Estimator
-
def
fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[SentenceDetectorDLModel]
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" )
-
def
fit(dataset: Dataset[_], paramMap: ParamMap): SentenceDetectorDLModel
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" )
-
def
fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): SentenceDetectorDLModel
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" ) @varargs()
-
final
def
get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
getCustomBounds: Array[String]
Custom sentence separator text
-
final
def
getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
def
getEpochsNumber: Int
Maximum number of epochs to train (Default:
5
) -
def
getExplodeSentences: Boolean
Whether to split sentences into different Dataset rows.
Whether to split sentences into different Dataset rows. Useful for higher parallelism in fat rows. Defaults to false.
- def getGraphFilename: String
-
def
getImpossiblePenultimates: Array[String]
Get impossible penultimates
-
def
getInputCols: Array[String]
- returns
input annotations columns currently used
- Definition Classes
- HasInputAnnotationCols
-
def
getLazyAnnotator: Boolean
- Definition Classes
- CanBeLazy
-
def
getMaxLength: Int
Get the maximum allowed length for each sentence
-
def
getMinLength: Int
Get the minimum allowed length for each sentence
-
def
getModel: String
Get model architecture
-
final
def
getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
-
final
def
getOutputCol: String
Gets annotation column name going to generate
Gets annotation column name going to generate
- Definition Classes
- HasOutputAnnotationCol
-
def
getOutputLogsPath: String
Get output logs path
-
def
getParam(paramName: String): Param[Any]
- Definition Classes
- Params
-
def
getSplitLength: Int
Length at which sentences will be forcibly split
-
def
getUseCustomBoundsOnly: Boolean
Use only custom bounds without considering those of Pragmatic Segmenter.
Use only custom bounds without considering those of Pragmatic Segmenter. Defaults to false. Needs customBounds.
-
def
getValidationSplit: Float
Choose the proportion of training dataset to be validated against the model on each Epoch.
Choose the proportion of training dataset to be validated against the model on each Epoch. The value should be between 0.0 and 1.0 and by default it is 0.0 and off.
-
final
def
hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
-
def
hasParam(paramName: String): Boolean
- Definition Classes
- Params
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
val
impossiblePenultimates: StringArrayParam
Impossible penultimates, which should not be split on Default:
Impossible penultimates, which should not be split on Default:
Array( "Bros", "No", "al", "vs", "etc", "Fig", "Dr", "Prof", "PhD", "MD", "Co", "Corp", "Inc", "bros", "VS", "Vs", "ETC", "fig", "dr", "prof", "PHD", "phd", "md", "co", "corp", "inc", "Jan", "Feb", "Mar", "Apr", "Jul", "Aug", "Sep", "Sept", "Oct", "Nov", "Dec", "St", "st", "AM", "PM", "am", "pm", "e.g", "f.e", "i.e" )
-
def
initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
def
initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
val
inputAnnotatorTypes: Array[AnnotatorType]
Input annotator type : DOCUMENT
Input annotator type : DOCUMENT
- Definition Classes
- SentenceDetectorDLApproach → HasInputAnnotationCols
-
final
val
inputCols: StringArrayParam
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
final
def
isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
isSet(param: Param[_]): Boolean
- Definition Classes
- Params
-
def
isTraceEnabled(): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
val
lazyAnnotator: BooleanParam
- Definition Classes
- CanBeLazy
-
def
log: Logger
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logName: String
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
val
maxLength: IntParam
Set the maximum allowed length for each sentence (Ignored if not set)
-
val
minLength: IntParam
Set the minimum allowed length for each sentence (Default:
0
) -
var
modelArchitecture: Param[String]
Model architecture (Default:
"cnn"
) -
def
msgHelper(schema: StructType): String
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
onTrained(model: SentenceDetectorDLModel, spark: SparkSession): Unit
- Definition Classes
- AnnotatorApproach
-
val
optionalInputAnnotatorTypes: Array[String]
- Definition Classes
- HasInputAnnotationCols
-
val
outputAnnotatorType: String
Output annotator type : DOCUMENT
Output annotator type : DOCUMENT
- Definition Classes
- SentenceDetectorDLApproach → HasOutputAnnotatorType
-
final
val
outputCol: Param[String]
- Attributes
- protected
- Definition Classes
- HasOutputAnnotationCol
-
val
outputLogsPath: Param[String]
Path to folder to output logs (Default:
""
) If no path is specified, no logs are generated -
lazy val
params: Array[Param[_]]
- Definition Classes
- Params
-
def
save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @Since( "1.6.0" ) @throws( ... )
-
final
def
set(paramPair: ParamPair[_]): SentenceDetectorDLApproach.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set(param: String, value: Any): SentenceDetectorDLApproach.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set[T](param: Param[T], value: T): SentenceDetectorDLApproach.this.type
- Definition Classes
- Params
-
def
setCustomBounds(value: Array[String]): SentenceDetectorDLApproach.this.type
Custom sentence separator text
-
final
def
setDefault(paramPairs: ParamPair[_]*): SentenceDetectorDLApproach.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
setDefault[T](param: Param[T], value: T): SentenceDetectorDLApproach.this.type
- Attributes
- protected[org.apache.spark.ml]
- Definition Classes
- Params
-
def
setEpochsNumber(epochs: Int): SentenceDetectorDLApproach.this.type
Maximum number of epochs to train (Default:
5
) -
def
setExplodeSentences(value: Boolean): SentenceDetectorDLApproach.this.type
Whether to split sentences into different Dataset rows.
Whether to split sentences into different Dataset rows. Useful for higher parallelism in fat rows. Defaults to false.
- def setGraphFile(graphFilename: String): SentenceDetectorDLApproach.this.type
-
def
setImpossiblePenultimates(impossiblePenultimates: Array[String]): SentenceDetectorDLApproach.this.type
Set impossible penultimates
-
final
def
setInputCols(value: String*): SentenceDetectorDLApproach.this.type
- Definition Classes
- HasInputAnnotationCols
-
def
setInputCols(value: Array[String]): SentenceDetectorDLApproach.this.type
Overrides required annotators column if different than default
Overrides required annotators column if different than default
- Definition Classes
- HasInputAnnotationCols
-
def
setLazyAnnotator(value: Boolean): SentenceDetectorDLApproach.this.type
- Definition Classes
- CanBeLazy
-
def
setMaxLength(value: Int): SentenceDetectorDLApproach.this.type
Set the maximum allowed length for each sentence
-
def
setMinLength(value: Int): SentenceDetectorDLApproach.this.type
Set the minimum allowed length for each sentence
-
def
setModel(modelArchitecture: String): SentenceDetectorDLApproach.this.type
Set architecture
-
final
def
setOutputCol(value: String): SentenceDetectorDLApproach.this.type
Overrides annotation column name when transforming
Overrides annotation column name when transforming
- Definition Classes
- HasOutputAnnotationCol
-
def
setOutputLogsPath(outputLogsPath: String): SentenceDetectorDLApproach.this.type
Set the output log path
-
def
setSplitLength(value: Int): SentenceDetectorDLApproach.this.type
Length at which sentences will be forcibly split
-
def
setUseCustomBoundsOnly(value: Boolean): SentenceDetectorDLApproach.this.type
Use only custom bounds without considering those of Pragmatic Segmenter.
Use only custom bounds without considering those of Pragmatic Segmenter. Defaults to false. Needs customBounds.
-
def
setValidationSplit(validationSplit: Float): SentenceDetectorDLApproach.this.type
Choose the proportion of training dataset to be validated against the model on each Epoch.
Choose the proportion of training dataset to be validated against the model on each Epoch. The value should be between 0.0 and 1.0 and by default it is 0.0 and off.
-
val
splitLength: IntParam
Length at which sentences will be forcibly split (Ignored if not set)
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
-
def
train(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): SentenceDetectorDLModel
- Definition Classes
- SentenceDetectorDLApproach → AnnotatorApproach
-
final
def
transformSchema(schema: StructType): StructType
requirement for pipeline transformation validation.
requirement for pipeline transformation validation. It is called on fit()
- Definition Classes
- AnnotatorApproach → PipelineStage
-
def
transformSchema(schema: StructType, logging: Boolean): StructType
- Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
-
val
uid: String
- Definition Classes
- SentenceDetectorDLApproach → Identifiable
-
val
useCustomBoundsOnly: BooleanParam
Whether to only utilize custom bounds for sentence detection (Default:
false
) -
def
validate(schema: StructType): Boolean
takes a Dataset and checks to see if all the required annotation types are present.
takes a Dataset and checks to see if all the required annotation types are present.
- schema
to be validated
- returns
True if all the required types are present, else false
- Attributes
- protected
- Definition Classes
- AnnotatorApproach
-
val
validationSplit: FloatParam
Choose the proportion of training dataset to be validated against the model on each Epoch (Default:
0.0f
).Choose the proportion of training dataset to be validated against the model on each Epoch (Default:
0.0f
). The value should be between0.0
and1.0
and by default it is0.0
and off. -
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
def
write: MLWriter
- Definition Classes
- DefaultParamsWritable → MLWritable
Inherited from AnnotatorApproach[SentenceDetectorDLModel]
Inherited from CanBeLazy
Inherited from DefaultParamsWritable
Inherited from MLWritable
Inherited from HasOutputAnnotatorType
Inherited from HasOutputAnnotationCol
Inherited from HasInputAnnotationCols
Inherited from Estimator[SentenceDetectorDLModel]
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.
Annotator types
Required input and expected output annotator types