com.johnsnowlabs.nlp.annotators.spell.norvig
NorvigSweetingModel
Companion object NorvigSweetingModel
class NorvigSweetingModel extends AnnotatorModel[NorvigSweetingModel] with HasSimpleAnnotate[NorvigSweetingModel] with NorvigSweetingParams
This annotator retrieves tokens and makes corrections automatically if not found in an English dictionary. Inspired by Norvig model and SymSpell.
The Symmetric Delete spelling correction algorithm reduces the complexity of edit candidate generation and dictionary lookup for a given Damerau-Levenshtein distance. It is six orders of magnitude faster (than the standard approach with deletes + transposes + replaces + inserts) and language independent.
This is the instantiated model of the NorvigSweetingApproach. For training your own model, please see the documentation of that class.
Pretrained models can be loaded with pretrained
of the companion object:
val spellChecker = NorvigSweetingModel.pretrained() .setInputCols("token") .setOutputCol("spell") .setDoubleVariants(true)
The default model is "spellcheck_norvig"
, if no name is provided. For available pretrained
models please see the Models Hub.
For extended examples of usage, see the NorvigSweetingTestSpec.
Example
import spark.implicits._ import com.johnsnowlabs.nlp.base.DocumentAssembler import com.johnsnowlabs.nlp.annotators.Tokenizer import com.johnsnowlabs.nlp.annotators.spell.norvig.NorvigSweetingModel import org.apache.spark.ml.Pipeline val documentAssembler = new DocumentAssembler() .setInputCol("text") .setOutputCol("document") val tokenizer = new Tokenizer() .setInputCols("document") .setOutputCol("token") val spellChecker = NorvigSweetingModel.pretrained() .setInputCols("token") .setOutputCol("spell") val pipeline = new Pipeline().setStages(Array( documentAssembler, tokenizer, spellChecker )) val data = Seq("somtimes i wrrite wordz erong.").toDF("text") val result = pipeline.fit(data).transform(data) result.select("spell.result").show(false) +--------------------------------------+ |result | +--------------------------------------+ |[sometimes, i, write, words, wrong, .]| +--------------------------------------+
- See also
SymmetricDeleteModel for an alternative approach to spell checking
ContextSpellCheckerModel for a DL based approach
- Grouped
- Alphabetic
- By Inheritance
- NorvigSweetingModel
- NorvigSweetingParams
- HasSimpleAnnotate
- AnnotatorModel
- CanBeLazy
- RawAnnotator
- HasOutputAnnotationCol
- HasInputAnnotationCols
- HasOutputAnnotatorType
- ParamsAndFeaturesWritable
- HasFeatures
- DefaultParamsWritable
- MLWritable
- Model
- Transformer
- PipelineStage
- Logging
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
Type Members
-
type
AnnotationContent = Seq[Row]
internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI
internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI
- Attributes
- protected
- Definition Classes
- AnnotatorModel
-
type
AnnotatorType = String
- Definition Classes
- HasOutputAnnotatorType
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
$[T](param: Param[T]): T
- Attributes
- protected
- Definition Classes
- Params
-
def
$$[T](feature: StructFeature[T]): T
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
$$[K, V](feature: MapFeature[K, V]): Map[K, V]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
$$[T](feature: SetFeature[T]): Set[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
$$[T](feature: ArrayFeature[T]): Array[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
_transform(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): DataFrame
- Attributes
- protected
- Definition Classes
- AnnotatorModel
-
def
afterAnnotate(dataset: DataFrame): DataFrame
- Attributes
- protected
- Definition Classes
- AnnotatorModel
-
def
annotate(annotations: Seq[Annotation]): Seq[Annotation]
takes a document and annotations and produces new annotations of this annotator's annotation type
takes a document and annotations and produces new annotations of this annotator's annotation type
- annotations
Annotations that correspond to inputAnnotationCols generated by previous annotators if any
- returns
any number of annotations processed for every input annotation. Not necessary one to one relationship
- Definition Classes
- NorvigSweetingModel → HasSimpleAnnotate
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
beforeAnnotate(dataset: Dataset[_]): Dataset[_]
- Attributes
- protected
- Definition Classes
- AnnotatorModel
-
val
caseSensitive: BooleanParam
Sensitivity on spell checking (Default:
true
).Sensitivity on spell checking (Default:
true
). Might affect accuracy- Definition Classes
- NorvigSweetingParams
-
final
def
checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
- def checkSpellWord(raw: String): (String, Double)
-
final
def
clear(param: Param[_]): NorvigSweetingModel.this.type
- Definition Classes
- Params
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
def
computeDoubleVariants(word: String): List[String]
variants of variants of a word
-
def
copy(extra: ParamMap): NorvigSweetingModel
requirement for annotators copies
requirement for annotators copies
- Definition Classes
- RawAnnotator → Model → Transformer → PipelineStage → Params
-
def
copyValues[T <: Params](to: T, extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
final
def
defaultCopy[T <: Params](extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
def
dfAnnotate: UserDefinedFunction
Wraps annotate to happen inside SparkSQL user defined functions in order to act with org.apache.spark.sql.Column
Wraps annotate to happen inside SparkSQL user defined functions in order to act with org.apache.spark.sql.Column
- returns
udf function to be applied to inputCols using this annotator's annotate function as part of ML transformation
- Definition Classes
- HasSimpleAnnotate
-
val
doubleVariants: BooleanParam
Increase search at cost of performance (Default:
false
).Increase search at cost of performance (Default:
false
). Enables extra check for word combinations, More accuracy at performance- Definition Classes
- NorvigSweetingParams
-
val
dupsLimit: IntParam
Maximum duplicate of characters in a word to consider (Default:
2
).Maximum duplicate of characters in a word to consider (Default:
2
). Maximum duplicate of characters to account for.- Definition Classes
- NorvigSweetingParams
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
explainParam(param: Param[_]): String
- Definition Classes
- Params
-
def
explainParams(): String
- Definition Classes
- Params
-
def
extraValidate(structType: StructType): Boolean
- Attributes
- protected
- Definition Classes
- RawAnnotator
-
def
extraValidateMsg: String
Override for additional custom schema checks
Override for additional custom schema checks
- Attributes
- protected
- Definition Classes
- RawAnnotator
-
final
def
extractParamMap(): ParamMap
- Definition Classes
- Params
-
final
def
extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
-
val
features: ArrayBuffer[Feature[_, _, _]]
- Definition Classes
- HasFeatures
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
val
frequencyPriority: BooleanParam
Applies frequency over hamming in intersections (Default:
true
).Applies frequency over hamming in intersections (Default:
true
). When false hamming takes priority- Definition Classes
- NorvigSweetingParams
-
def
get[T](feature: StructFeature[T]): Option[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
get[K, V](feature: MapFeature[K, V]): Option[Map[K, V]]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
get[T](feature: SetFeature[T]): Option[Set[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
get[T](feature: ArrayFeature[T]): Option[Array[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
def
getCaseSensitive: Boolean
Sensitivity on spell checking (Default:
true
).Sensitivity on spell checking (Default:
true
). Might affect accuracy- Definition Classes
- NorvigSweetingParams
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
def
getDoubleVariants: Boolean
Increase search at cost of performance (Default:
false
).Increase search at cost of performance (Default:
false
). Enables extra check for word combinations- Definition Classes
- NorvigSweetingParams
-
def
getDupsLimit: Int
Maximum duplicate of characters in a word to consider (Default:
2
).Maximum duplicate of characters in a word to consider (Default:
2
). Maximum duplicate of characters to account for.- Definition Classes
- NorvigSweetingParams
- def getFrequencyOrHammingRecommendation(wordsByFrequency: List[(String, Long)], wordsByHamming: List[(String, Long)], input: String): (Option[String], Double)
-
def
getFrequencyPriority: Boolean
Applies frequency over hamming in intersections (Default:
true
).Applies frequency over hamming in intersections (Default:
true
). When false hamming takes priority- Definition Classes
- NorvigSweetingParams
-
def
getInputCols: Array[String]
- returns
input annotations columns currently used
- Definition Classes
- HasInputAnnotationCols
-
def
getIntersections: Int
Hamming intersections to attempt (Default:
10
).Hamming intersections to attempt (Default:
10
).- Definition Classes
- NorvigSweetingParams
-
def
getLazyAnnotator: Boolean
- Definition Classes
- CanBeLazy
-
final
def
getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
-
final
def
getOutputCol: String
Gets annotation column name going to generate
Gets annotation column name going to generate
- Definition Classes
- HasOutputAnnotationCol
-
def
getParam(paramName: String): Param[Any]
- Definition Classes
- Params
-
def
getReductLimit: Int
Word reduction limit (Default:
3
).Word reduction limit (Default:
3
).- Definition Classes
- NorvigSweetingParams
- def getResult(wordsByFrequency: List[(String, Long)], wordsByHamming: List[(String, Long)], input: String): (String, Double)
- def getResultByFrequency(wordsByFrequency: List[(String, Long)]): (Option[String], Double)
- def getResultByHamming(wordsByHamming: List[(String, Long)]): (Option[String], Double)
- def getScoreFrequency(word: String): Double
-
def
getShortCircuit: Boolean
Increase performance at cost of accuracy (Default:
false
).Increase performance at cost of accuracy (Default:
false
). Faster but less accurate mode- Definition Classes
- NorvigSweetingParams
- def getSortedWordsByFrequency(words: List[String], input: String): List[(String, Long)]
- def getSortedWordsByHamming(words: List[String], input: String): List[(String, Long)]
-
def
getVowelSwapLimit: Int
Vowel swap attempts (Default:
6
).Vowel swap attempts (Default:
6
).- Definition Classes
- NorvigSweetingParams
-
def
getWordCount: Map[String, Long]
- Attributes
- protected
-
def
getWordSizeIgnore: Int
Minimum size of word before ignoring (Default:
3
).Minimum size of word before ignoring (Default:
3
). Minimum size of word before moving on.- Definition Classes
- NorvigSweetingParams
-
final
def
hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
-
def
hasParam(paramName: String): Boolean
- Definition Classes
- Params
-
def
hasParent: Boolean
- Definition Classes
- Model
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
def
initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
val
inputAnnotatorTypes: Array[AnnotatorType]
Input annotator type : TOKEN
Input annotator type : TOKEN
- Definition Classes
- NorvigSweetingModel → HasInputAnnotationCols
-
final
val
inputCols: StringArrayParam
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
val
intersections: IntParam
Hamming intersections to attempt (Default:
10
).Hamming intersections to attempt (Default:
10
).- Definition Classes
- NorvigSweetingParams
-
final
def
isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
isSet(param: Param[_]): Boolean
- Definition Classes
- Params
-
def
isTraceEnabled(): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
val
lazyAnnotator: BooleanParam
- Definition Classes
- CanBeLazy
-
def
log: Logger
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logName: String
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
msgHelper(schema: StructType): String
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def normalizeFrequencyValue(value: Long): Double
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
onWrite(path: String, spark: SparkSession): Unit
- Attributes
- protected
- Definition Classes
- ParamsAndFeaturesWritable
-
val
optionalInputAnnotatorTypes: Array[String]
- Definition Classes
- HasInputAnnotationCols
-
val
outputAnnotatorType: AnnotatorType
Output annotator type : TOKEN
Output annotator type : TOKEN
- Definition Classes
- NorvigSweetingModel → HasOutputAnnotatorType
-
final
val
outputCol: Param[String]
- Attributes
- protected
- Definition Classes
- HasOutputAnnotationCol
-
lazy val
params: Array[Param[_]]
- Definition Classes
- Params
-
var
parent: Estimator[NorvigSweetingModel]
- Definition Classes
- Model
-
val
reductLimit: IntParam
Word reduction limit (Default:
3
).Word reduction limit (Default:
3
).- Definition Classes
- NorvigSweetingParams
-
def
save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @Since( "1.6.0" ) @throws( ... )
-
def
set[T](feature: StructFeature[T], value: T): NorvigSweetingModel.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
set[K, V](feature: MapFeature[K, V], value: Map[K, V]): NorvigSweetingModel.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
set[T](feature: SetFeature[T], value: Set[T]): NorvigSweetingModel.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
set[T](feature: ArrayFeature[T], value: Array[T]): NorvigSweetingModel.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
set(paramPair: ParamPair[_]): NorvigSweetingModel.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set(param: String, value: Any): NorvigSweetingModel.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set[T](param: Param[T], value: T): NorvigSweetingModel.this.type
- Definition Classes
- Params
-
def
setCaseSensitive(value: Boolean): NorvigSweetingModel.this.type
Sensitivity on spell checking (Default:
true
).Sensitivity on spell checking (Default:
true
). Might affect accuracy- Definition Classes
- NorvigSweetingParams
-
def
setDefault[T](feature: StructFeature[T], value: () ⇒ T): NorvigSweetingModel.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
setDefault[K, V](feature: MapFeature[K, V], value: () ⇒ Map[K, V]): NorvigSweetingModel.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
setDefault[T](feature: SetFeature[T], value: () ⇒ Set[T]): NorvigSweetingModel.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
setDefault[T](feature: ArrayFeature[T], value: () ⇒ Array[T]): NorvigSweetingModel.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
setDefault(paramPairs: ParamPair[_]*): NorvigSweetingModel.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
setDefault[T](param: Param[T], value: T): NorvigSweetingModel.this.type
- Attributes
- protected[org.apache.spark.ml]
- Definition Classes
- Params
-
def
setDoubleVariants(value: Boolean): NorvigSweetingModel.this.type
Increase search at cost of performance (Default:
false
).Increase search at cost of performance (Default:
false
). Enables extra check for word combinations- Definition Classes
- NorvigSweetingParams
-
def
setDupsLimit(value: Int): NorvigSweetingModel.this.type
Maximum duplicate of characters in a word to consider (Default:
2
).Maximum duplicate of characters in a word to consider (Default:
2
). Maximum duplicate of characters to account for. Defaults to 2.- Definition Classes
- NorvigSweetingParams
-
def
setFrequencyPriority(value: Boolean): NorvigSweetingModel.this.type
Applies frequency over hamming in intersections (Default:
true
).Applies frequency over hamming in intersections (Default:
true
). When false hamming takes priority- Definition Classes
- NorvigSweetingParams
-
final
def
setInputCols(value: String*): NorvigSweetingModel.this.type
- Definition Classes
- HasInputAnnotationCols
-
def
setInputCols(value: Array[String]): NorvigSweetingModel.this.type
Overrides required annotators column if different than default
Overrides required annotators column if different than default
- Definition Classes
- HasInputAnnotationCols
-
def
setIntersections(value: Int): NorvigSweetingModel.this.type
Hamming intersections to attempt (Default:
10
).Hamming intersections to attempt (Default:
10
).- Definition Classes
- NorvigSweetingParams
-
def
setLazyAnnotator(value: Boolean): NorvigSweetingModel.this.type
- Definition Classes
- CanBeLazy
-
final
def
setOutputCol(value: String): NorvigSweetingModel.this.type
Overrides annotation column name when transforming
Overrides annotation column name when transforming
- Definition Classes
- HasOutputAnnotationCol
-
def
setParent(parent: Estimator[NorvigSweetingModel]): NorvigSweetingModel
- Definition Classes
- Model
-
def
setReductLimit(value: Int): NorvigSweetingModel.this.type
Word reduction limit (Default:
3
).Word reduction limit (Default:
3
).- Definition Classes
- NorvigSweetingParams
-
def
setShortCircuit(value: Boolean): NorvigSweetingModel.this.type
Increase performance at cost of accuracy (Default:
false
).Increase performance at cost of accuracy (Default:
false
). Faster but less accurate mode- Definition Classes
- NorvigSweetingParams
-
def
setVowelSwapLimit(value: Int): NorvigSweetingModel.this.type
Vowel swap attempts (Default:
6
).Vowel swap attempts (Default:
6
).- Definition Classes
- NorvigSweetingParams
- def setWordCount(value: Map[String, Long]): NorvigSweetingModel.this.type
-
def
setWordSizeIgnore(value: Int): NorvigSweetingModel.this.type
Minimum size of word before ignoring (Default:
3
).Minimum size of word before ignoring (Default:
3
). Minimum size of word before moving on.- Definition Classes
- NorvigSweetingParams
-
val
shortCircuit: BooleanParam
Increase performance at cost of accuracy (Default:
false
).Increase performance at cost of accuracy (Default:
false
). Faster but less accurate mode- Definition Classes
- NorvigSweetingParams
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
-
final
def
transform(dataset: Dataset[_]): DataFrame
Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content
Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content
- dataset
Dataset[Row]
- Definition Classes
- AnnotatorModel → Transformer
-
def
transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
- Definition Classes
- Transformer
- Annotations
- @Since( "2.0.0" )
-
def
transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
- Definition Classes
- Transformer
- Annotations
- @Since( "2.0.0" ) @varargs()
-
final
def
transformSchema(schema: StructType): StructType
requirement for pipeline transformation validation.
requirement for pipeline transformation validation. It is called on fit()
- Definition Classes
- RawAnnotator → PipelineStage
-
def
transformSchema(schema: StructType, logging: Boolean): StructType
- Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
-
val
uid: String
- Definition Classes
- NorvigSweetingModel → Identifiable
-
def
validate(schema: StructType): Boolean
takes a Dataset and checks to see if all the required annotation types are present.
takes a Dataset and checks to see if all the required annotation types are present.
- schema
to be validated
- returns
True if all the required types are present, else false
- Attributes
- protected
- Definition Classes
- RawAnnotator
-
val
vowelSwapLimit: IntParam
Vowel swap attempts (Default:
6
).Vowel swap attempts (Default:
6
).- Definition Classes
- NorvigSweetingParams
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
val
wordCount: MapFeature[String, Long]
Number of words in the dictionary
Number of words in the dictionary
- Attributes
- protected
-
val
wordSizeIgnore: IntParam
Minimum size of word before ignoring (Default:
3
).Minimum size of word before ignoring (Default:
3
). Minimum size of word before moving on.- Definition Classes
- NorvigSweetingParams
-
def
wrapColumnMetadata(col: Column): Column
- Attributes
- protected
- Definition Classes
- RawAnnotator
-
def
write: MLWriter
- Definition Classes
- ParamsAndFeaturesWritable → DefaultParamsWritable → MLWritable
Inherited from NorvigSweetingParams
Inherited from HasSimpleAnnotate[NorvigSweetingModel]
Inherited from AnnotatorModel[NorvigSweetingModel]
Inherited from CanBeLazy
Inherited from RawAnnotator[NorvigSweetingModel]
Inherited from HasOutputAnnotationCol
Inherited from HasInputAnnotationCols
Inherited from HasOutputAnnotatorType
Inherited from ParamsAndFeaturesWritable
Inherited from HasFeatures
Inherited from DefaultParamsWritable
Inherited from MLWritable
Inherited from Model[NorvigSweetingModel]
Inherited from Transformer
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.
Annotator types
Required input and expected output annotator types