com.johnsnowlabs.nlp.annotators.spell.norvig
NorvigSweetingApproach
Companion object NorvigSweetingApproach
class NorvigSweetingApproach extends AnnotatorApproach[NorvigSweetingModel] with NorvigSweetingParams
Trains annotator, that retrieves tokens and makes corrections automatically if not found in an English dictionary, based on the algorithm by Peter Norvig.
The algorithm is based on a Bayesian approach to spell checking: Given the word we look in the provided dictionary to choose the word with the highest probability to be the correct one.
A dictionary of correct spellings must be provided with setDictionary
either in the form of
a text file or directly as an
ExternalResource, where each word is parsed
by a regex pattern.
Inspired by the spell checker by Peter Norvig: How to Write a Spelling Corrector.
For instantiated/pretrained models, see NorvigSweetingModel.
For extended examples of usage, see the NorvigSweetingTestSpec.
Example
In this example, the dictionary "words.txt"
has the form of
... gummy gummic gummier gummiest gummiferous ...
This dictionary is then set to be the basis of the spell checker.
import com.johnsnowlabs.nlp.base.DocumentAssembler import com.johnsnowlabs.nlp.annotators.Tokenizer import com.johnsnowlabs.nlp.annotators.spell.norvig.NorvigSweetingApproach import org.apache.spark.ml.Pipeline val documentAssembler = new DocumentAssembler() .setInputCol("text") .setOutputCol("document") val tokenizer = new Tokenizer() .setInputCols("document") .setOutputCol("token") val spellChecker = new NorvigSweetingApproach() .setInputCols("token") .setOutputCol("spell") .setDictionary("src/test/resources/spell/words.txt") val pipeline = new Pipeline().setStages(Array( documentAssembler, tokenizer, spellChecker )) val pipelineModel = pipeline.fit(trainingData)
- See also
SymmetricDeleteApproach for an alternative approach to spell checking
ContextSpellCheckerApproach for a DL based approach
- Grouped
- Alphabetic
- By Inheritance
- NorvigSweetingApproach
- NorvigSweetingParams
- AnnotatorApproach
- CanBeLazy
- DefaultParamsWritable
- MLWritable
- HasOutputAnnotatorType
- HasOutputAnnotationCol
- HasInputAnnotationCols
- Estimator
- PipelineStage
- Logging
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Type Members
-
type
AnnotatorType = String
- Definition Classes
- HasOutputAnnotatorType
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
$[T](param: Param[T]): T
- Attributes
- protected
- Definition Classes
- Params
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
_fit(dataset: Dataset[_], recursiveStages: Option[PipelineModel]): NorvigSweetingModel
- Attributes
- protected
- Definition Classes
- AnnotatorApproach
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
beforeTraining(spark: SparkSession): Unit
- Definition Classes
- AnnotatorApproach
-
val
caseSensitive: BooleanParam
Sensitivity on spell checking (Default:
true
).Sensitivity on spell checking (Default:
true
). Might affect accuracy- Definition Classes
- NorvigSweetingParams
-
final
def
checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
final
def
clear(param: Param[_]): NorvigSweetingApproach.this.type
- Definition Classes
- Params
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
final
def
copy(extra: ParamMap): Estimator[NorvigSweetingModel]
- Definition Classes
- AnnotatorApproach → Estimator → PipelineStage → Params
-
def
copyValues[T <: Params](to: T, extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
final
def
defaultCopy[T <: Params](extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
val
description: String
Spell checking algorithm inspired on Norvig model
Spell checking algorithm inspired on Norvig model
- Definition Classes
- NorvigSweetingApproach → AnnotatorApproach
-
val
dictionary: ExternalResourceParam
External dictionary to be used, which needs
"tokenPattern"
(Default:\S+
) for parsing the resource.External dictionary to be used, which needs
"tokenPattern"
(Default:\S+
) for parsing the resource.Example
... gummy gummic gummier gummiest gummiferous ...
-
val
doubleVariants: BooleanParam
Increase search at cost of performance (Default:
false
).Increase search at cost of performance (Default:
false
). Enables extra check for word combinations, More accuracy at performance- Definition Classes
- NorvigSweetingParams
-
val
dupsLimit: IntParam
Maximum duplicate of characters in a word to consider (Default:
2
).Maximum duplicate of characters in a word to consider (Default:
2
). Maximum duplicate of characters to account for.- Definition Classes
- NorvigSweetingParams
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
explainParam(param: Param[_]): String
- Definition Classes
- Params
-
def
explainParams(): String
- Definition Classes
- Params
-
final
def
extractParamMap(): ParamMap
- Definition Classes
- Params
-
final
def
extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
fit(dataset: Dataset[_]): NorvigSweetingModel
- Definition Classes
- AnnotatorApproach → Estimator
-
def
fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[NorvigSweetingModel]
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" )
-
def
fit(dataset: Dataset[_], paramMap: ParamMap): NorvigSweetingModel
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" )
-
def
fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): NorvigSweetingModel
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" ) @varargs()
-
val
frequencyPriority: BooleanParam
Applies frequency over hamming in intersections (Default:
true
).Applies frequency over hamming in intersections (Default:
true
). When false hamming takes priority- Definition Classes
- NorvigSweetingParams
-
final
def
get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
def
getCaseSensitive: Boolean
Sensitivity on spell checking (Default:
true
).Sensitivity on spell checking (Default:
true
). Might affect accuracy- Definition Classes
- NorvigSweetingParams
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
def
getDoubleVariants: Boolean
Increase search at cost of performance (Default:
false
).Increase search at cost of performance (Default:
false
). Enables extra check for word combinations- Definition Classes
- NorvigSweetingParams
-
def
getDupsLimit: Int
Maximum duplicate of characters in a word to consider (Default:
2
).Maximum duplicate of characters in a word to consider (Default:
2
). Maximum duplicate of characters to account for.- Definition Classes
- NorvigSweetingParams
-
def
getFrequencyPriority: Boolean
Applies frequency over hamming in intersections (Default:
true
).Applies frequency over hamming in intersections (Default:
true
). When false hamming takes priority- Definition Classes
- NorvigSweetingParams
-
def
getInputCols: Array[String]
- returns
input annotations columns currently used
- Definition Classes
- HasInputAnnotationCols
-
def
getIntersections: Int
Hamming intersections to attempt (Default:
10
).Hamming intersections to attempt (Default:
10
).- Definition Classes
- NorvigSweetingParams
-
def
getLazyAnnotator: Boolean
- Definition Classes
- CanBeLazy
-
final
def
getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
-
final
def
getOutputCol: String
Gets annotation column name going to generate
Gets annotation column name going to generate
- Definition Classes
- HasOutputAnnotationCol
-
def
getParam(paramName: String): Param[Any]
- Definition Classes
- Params
-
def
getReductLimit: Int
Word reduction limit (Default:
3
).Word reduction limit (Default:
3
).- Definition Classes
- NorvigSweetingParams
-
def
getShortCircuit: Boolean
Increase performance at cost of accuracy (Default:
false
).Increase performance at cost of accuracy (Default:
false
). Faster but less accurate mode- Definition Classes
- NorvigSweetingParams
-
def
getVowelSwapLimit: Int
Vowel swap attempts (Default:
6
).Vowel swap attempts (Default:
6
).- Definition Classes
- NorvigSweetingParams
-
def
getWordSizeIgnore: Int
Minimum size of word before ignoring (Default:
3
).Minimum size of word before ignoring (Default:
3
). Minimum size of word before moving on.- Definition Classes
- NorvigSweetingParams
-
final
def
hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
-
def
hasParam(paramName: String): Boolean
- Definition Classes
- Params
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
def
initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
val
inputAnnotatorTypes: Array[AnnotatorType]
Input annotator type : TOKEN
Input annotator type : TOKEN
- Definition Classes
- NorvigSweetingApproach → HasInputAnnotationCols
-
final
val
inputCols: StringArrayParam
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
val
intersections: IntParam
Hamming intersections to attempt (Default:
10
).Hamming intersections to attempt (Default:
10
).- Definition Classes
- NorvigSweetingParams
-
final
def
isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
isSet(param: Param[_]): Boolean
- Definition Classes
- Params
-
def
isTraceEnabled(): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
val
lazyAnnotator: BooleanParam
- Definition Classes
- CanBeLazy
-
def
log: Logger
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logName: String
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
msgHelper(schema: StructType): String
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
onTrained(model: NorvigSweetingModel, spark: SparkSession): Unit
- Definition Classes
- AnnotatorApproach
-
val
optionalInputAnnotatorTypes: Array[String]
- Definition Classes
- HasInputAnnotationCols
-
val
outputAnnotatorType: AnnotatorType
Output annotator type : TOKEN
Output annotator type : TOKEN
- Definition Classes
- NorvigSweetingApproach → HasOutputAnnotatorType
-
final
val
outputCol: Param[String]
- Attributes
- protected
- Definition Classes
- HasOutputAnnotationCol
-
lazy val
params: Array[Param[_]]
- Definition Classes
- Params
-
val
reductLimit: IntParam
Word reduction limit (Default:
3
).Word reduction limit (Default:
3
).- Definition Classes
- NorvigSweetingParams
-
def
save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @Since( "1.6.0" ) @throws( ... )
-
final
def
set(paramPair: ParamPair[_]): NorvigSweetingApproach.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set(param: String, value: Any): NorvigSweetingApproach.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set[T](param: Param[T], value: T): NorvigSweetingApproach.this.type
- Definition Classes
- Params
-
def
setCaseSensitive(value: Boolean): NorvigSweetingApproach.this.type
Sensitivity on spell checking (Default:
true
).Sensitivity on spell checking (Default:
true
). Might affect accuracy- Definition Classes
- NorvigSweetingParams
-
final
def
setDefault(paramPairs: ParamPair[_]*): NorvigSweetingApproach.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
setDefault[T](param: Param[T], value: T): NorvigSweetingApproach.this.type
- Attributes
- protected[org.apache.spark.ml]
- Definition Classes
- Params
-
def
setDictionary(path: String, tokenPattern: String = "\\S+", readAs: Format = ReadAs.TEXT, options: Map[String, String] = Map("format" -> "text")): NorvigSweetingApproach.this.type
Path to file with properly spelled words,
tokenPattern
is the regex pattern to identify them in text, readAs can beReadAs.TEXT
orReadAs.SPARK
, with options passed to Spark reader if the latter is set.Path to file with properly spelled words,
tokenPattern
is the regex pattern to identify them in text, readAs can beReadAs.TEXT
orReadAs.SPARK
, with options passed to Spark reader if the latter is set. Dictionary needstokenPattern
regex for separating words. -
def
setDictionary(value: ExternalResource): NorvigSweetingApproach.this.type
External dictionary already in the form of ExternalResource, for which the Map member
options
has an entry defined for"tokenPattern"
.External dictionary already in the form of ExternalResource, for which the Map member
options
has an entry defined for"tokenPattern"
.Example
val resource = ExternalResource( "src/test/resources/spell/words.txt", ReadAs.TEXT, Map("tokenPattern" -> "\\S+") ) val spellChecker = new NorvigSweetingApproach() .setInputCols("token") .setOutputCol("spell") .setDictionary(resource)
-
def
setDoubleVariants(value: Boolean): NorvigSweetingApproach.this.type
Increase search at cost of performance (Default:
false
).Increase search at cost of performance (Default:
false
). Enables extra check for word combinations- Definition Classes
- NorvigSweetingParams
-
def
setDupsLimit(value: Int): NorvigSweetingApproach.this.type
Maximum duplicate of characters in a word to consider (Default:
2
).Maximum duplicate of characters in a word to consider (Default:
2
). Maximum duplicate of characters to account for. Defaults to 2.- Definition Classes
- NorvigSweetingParams
-
def
setFrequencyPriority(value: Boolean): NorvigSweetingApproach.this.type
Applies frequency over hamming in intersections (Default:
true
).Applies frequency over hamming in intersections (Default:
true
). When false hamming takes priority- Definition Classes
- NorvigSweetingParams
-
final
def
setInputCols(value: String*): NorvigSweetingApproach.this.type
- Definition Classes
- HasInputAnnotationCols
-
def
setInputCols(value: Array[String]): NorvigSweetingApproach.this.type
Overrides required annotators column if different than default
Overrides required annotators column if different than default
- Definition Classes
- HasInputAnnotationCols
-
def
setIntersections(value: Int): NorvigSweetingApproach.this.type
Hamming intersections to attempt (Default:
10
).Hamming intersections to attempt (Default:
10
).- Definition Classes
- NorvigSweetingParams
-
def
setLazyAnnotator(value: Boolean): NorvigSweetingApproach.this.type
- Definition Classes
- CanBeLazy
-
final
def
setOutputCol(value: String): NorvigSweetingApproach.this.type
Overrides annotation column name when transforming
Overrides annotation column name when transforming
- Definition Classes
- HasOutputAnnotationCol
-
def
setReductLimit(value: Int): NorvigSweetingApproach.this.type
Word reduction limit (Default:
3
).Word reduction limit (Default:
3
).- Definition Classes
- NorvigSweetingParams
-
def
setShortCircuit(value: Boolean): NorvigSweetingApproach.this.type
Increase performance at cost of accuracy (Default:
false
).Increase performance at cost of accuracy (Default:
false
). Faster but less accurate mode- Definition Classes
- NorvigSweetingParams
-
def
setVowelSwapLimit(value: Int): NorvigSweetingApproach.this.type
Vowel swap attempts (Default:
6
).Vowel swap attempts (Default:
6
).- Definition Classes
- NorvigSweetingParams
-
def
setWordSizeIgnore(value: Int): NorvigSweetingApproach.this.type
Minimum size of word before ignoring (Default:
3
).Minimum size of word before ignoring (Default:
3
). Minimum size of word before moving on.- Definition Classes
- NorvigSweetingParams
-
val
shortCircuit: BooleanParam
Increase performance at cost of accuracy (Default:
false
).Increase performance at cost of accuracy (Default:
false
). Faster but less accurate mode- Definition Classes
- NorvigSweetingParams
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
-
def
train(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): NorvigSweetingModel
- Definition Classes
- NorvigSweetingApproach → AnnotatorApproach
-
final
def
transformSchema(schema: StructType): StructType
requirement for pipeline transformation validation.
requirement for pipeline transformation validation. It is called on fit()
- Definition Classes
- AnnotatorApproach → PipelineStage
-
def
transformSchema(schema: StructType, logging: Boolean): StructType
- Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
-
val
uid: String
- Definition Classes
- NorvigSweetingApproach → Identifiable
-
def
validate(schema: StructType): Boolean
takes a Dataset and checks to see if all the required annotation types are present.
takes a Dataset and checks to see if all the required annotation types are present.
- schema
to be validated
- returns
True if all the required types are present, else false
- Attributes
- protected
- Definition Classes
- AnnotatorApproach
-
val
vowelSwapLimit: IntParam
Vowel swap attempts (Default:
6
).Vowel swap attempts (Default:
6
).- Definition Classes
- NorvigSweetingParams
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
val
wordSizeIgnore: IntParam
Minimum size of word before ignoring (Default:
3
).Minimum size of word before ignoring (Default:
3
). Minimum size of word before moving on.- Definition Classes
- NorvigSweetingParams
-
def
write: MLWriter
- Definition Classes
- DefaultParamsWritable → MLWritable
Inherited from NorvigSweetingParams
Inherited from AnnotatorApproach[NorvigSweetingModel]
Inherited from CanBeLazy
Inherited from DefaultParamsWritable
Inherited from MLWritable
Inherited from HasOutputAnnotatorType
Inherited from HasOutputAnnotationCol
Inherited from HasInputAnnotationCols
Inherited from Estimator[NorvigSweetingModel]
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.
Annotator types
Required input and expected output annotator types