com.johnsnowlabs.nlp.annotators.spell.context
ContextSpellCheckerModel
Companion object ContextSpellCheckerModel
class ContextSpellCheckerModel extends AnnotatorModel[ContextSpellCheckerModel] with HasSimpleAnnotate[ContextSpellCheckerModel] with WeightedLevenshtein with WriteTensorflowModel with ParamsAndFeaturesWritable with HasTransducerFeatures with HasEngine
Implements a deep-learning based Noisy Channel Model Spell Algorithm. Correction candidates are extracted combining context information and word information.
Spell Checking is a sequence to sequence mapping problem. Given an input sequence, potentially
containing a certain number of errors, ContextSpellChecker
will rank correction sequences
according to three things:
- Different correction candidates for each word — word level.
- The surrounding text of each word, i.e. it’s context — sentence level.
- The relative cost of different correction candidates according to the edit operations at the character level it requires — subword level.
For an in-depth explanation of the module see the article Applying Context Aware Spell Checking in Spark NLP.
This is the instantiated model of the ContextSpellCheckerApproach. For training your own model, please see the documentation of that class.
Pretrained models can be loaded with pretrained
of the companion object:
val spellChecker = ContextSpellCheckerModel.pretrained() .setInputCols("token") .setOutputCol("checked")
The default model is "spellcheck_dl"
, if no name is provided. For available pretrained
models please see the Models Hub.
For extended examples of usage, see the Examples and the ContextSpellCheckerTestSpec.
Example
import spark.implicits._ import com.johnsnowlabs.nlp.DocumentAssembler import com.johnsnowlabs.nlp.annotators.Tokenizer import com.johnsnowlabs.nlp.annotators.spell.context.ContextSpellCheckerModel import org.apache.spark.ml.Pipeline val documentAssembler = new DocumentAssembler() .setInputCol("text") .setOutputCol("doc") val tokenizer = new Tokenizer() .setInputCols(Array("doc")) .setOutputCol("token") val spellChecker = ContextSpellCheckerModel .pretrained() .setTradeOff(12.0f) .setInputCols("token") .setOutputCol("checked") val pipeline = new Pipeline().setStages(Array( documentAssembler, tokenizer, spellChecker )) val data = Seq("It was a cold , dreary day and the country was white with smow .").toDF("text") val result = pipeline.fit(data).transform(data) result.select("checked.result").show(false) +--------------------------------------------------------------------------------+ |result | +--------------------------------------------------------------------------------+ |[It, was, a, cold, ,, dreary, day, and, the, country, was, white, with, snow, .]| +--------------------------------------------------------------------------------+
- See also
NorvigSweetingModel and SymmetricDeleteModel for alternative approaches to spell checking
- Grouped
- Alphabetic
- By Inheritance
- ContextSpellCheckerModel
- HasEngine
- HasTransducerFeatures
- WriteTensorflowModel
- WeightedLevenshtein
- HasSimpleAnnotate
- AnnotatorModel
- CanBeLazy
- RawAnnotator
- HasOutputAnnotationCol
- HasInputAnnotationCols
- HasOutputAnnotatorType
- ParamsAndFeaturesWritable
- HasFeatures
- DefaultParamsWritable
- MLWritable
- Model
- Transformer
- PipelineStage
- Logging
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
Type Members
-
type
AnnotationContent = Seq[Row]
internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI
internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI
- Attributes
- protected
- Definition Classes
- AnnotatorModel
-
type
AnnotatorType = String
- Definition Classes
- HasOutputAnnotatorType
- implicit class StringTools extends AnyRef
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
$[T](param: Param[T]): T
- Attributes
- protected
- Definition Classes
- Params
-
def
$$(feature: TransducerSeqFeature): Seq[SpecialClassParser]
- Attributes
- protected
- Definition Classes
- HasTransducerFeatures
-
def
$$(feature: TransducerFeature): VocabParser
- Attributes
- protected
- Definition Classes
- HasTransducerFeatures
-
def
$$[T](feature: StructFeature[T]): T
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
$$[K, V](feature: MapFeature[K, V]): Map[K, V]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
$$[T](feature: SetFeature[T]): Set[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
$$[T](feature: ArrayFeature[T]): Array[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
_transform(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): DataFrame
- Attributes
- protected
- Definition Classes
- AnnotatorModel
-
def
afterAnnotate(dataset: DataFrame): DataFrame
- Attributes
- protected
- Definition Classes
- AnnotatorModel
-
def
annotate(annotations: Seq[Annotation]): Seq[Annotation]
takes a document and annotations and produces new annotations of this annotator's annotation type
takes a document and annotations and produces new annotations of this annotator's annotation type
- annotations
Annotations that correspond to inputAnnotationCols generated by previous annotators if any
- returns
any number of annotations processed for every input annotation. Not necessary one to one relationship
- Definition Classes
- ContextSpellCheckerModel → HasSimpleAnnotate
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
backTrack(dist: Array[Array[Float]], s2: String, s1: String, j: Int, i: Int, acc: Seq[(String, String)]): Seq[(String, String)]
- Definition Classes
- WeightedLevenshtein
-
def
beforeAnnotate(dataset: Dataset[_]): Dataset[_]
- Definition Classes
- ContextSpellCheckerModel → AnnotatorModel
-
val
caseStrategy: IntParam
What case combinations to try when generating candidates (Default:
CandidateStrategy.ALL
). -
final
def
checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
val
classes: MapFeature[Int, (Int, Int)]
Classes the spell checker recognizes
-
final
def
clear(param: Param[_]): ContextSpellCheckerModel.this.type
- Definition Classes
- Params
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
val
compareLowcase: BooleanParam
If true will compare tokens in low case with vocabulary (Default:
false
) - def computeMask(annotations: Seq[Annotation]): Array[Boolean]
- def computeTrellis(annotations: Seq[Annotation], mask: Seq[Boolean]): Array[Array[(String, Double, String)]]
-
val
configProtoBytes: IntArrayParam
ConfigProto from tensorflow, serialized into byte array.
ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()
-
def
copy(extra: ParamMap): ContextSpellCheckerModel
requirement for annotators copies
requirement for annotators copies
- Definition Classes
- RawAnnotator → Model → Transformer → PipelineStage → Params
-
def
copyValues[T <: Params](to: T, extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
val
correctSymbols: BooleanParam
Whether to correct special symbols or skip spell checking for them
- def decodeViterbi(trellis: Array[Array[(String, Double, String)]]): (Array[String], Double)
-
final
def
defaultCopy[T <: Params](extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
def
dfAnnotate: UserDefinedFunction
Wraps annotate to happen inside SparkSQL user defined functions in order to act with org.apache.spark.sql.Column
Wraps annotate to happen inside SparkSQL user defined functions in order to act with org.apache.spark.sql.Column
- returns
udf function to be applied to inputCols using this annotator's annotate function as part of ML transformation
- Definition Classes
- HasSimpleAnnotate
-
val
engine: Param[String]
This param is set internally once via loadSavedModel.
This param is set internally once via loadSavedModel. That's why there is no setter
- Definition Classes
- HasEngine
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
val
errorThreshold: FloatParam
Threshold perplexity for a word to be considered as an error.
-
def
explainParam(param: Param[_]): String
- Definition Classes
- Params
-
def
explainParams(): String
- Definition Classes
- Params
-
def
extraValidate(structType: StructType): Boolean
- Attributes
- protected
- Definition Classes
- RawAnnotator
-
def
extraValidateMsg: String
Override for additional custom schema checks
Override for additional custom schema checks
- Attributes
- protected
- Definition Classes
- RawAnnotator
-
final
def
extractParamMap(): ParamMap
- Definition Classes
- Params
-
final
def
extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
-
val
features: ArrayBuffer[Feature[_, _, _]]
- Definition Classes
- HasFeatures
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
val
gamma: FloatParam
Controls the influence of individual word frequency in the decision (Default:
120.0f
). -
def
get(feature: TransducerSeqFeature): Option[Seq[SpecialClassParser]]
- Attributes
- protected
- Definition Classes
- HasTransducerFeatures
-
def
get(feature: TransducerFeature): Option[VocabParser]
- Attributes
- protected
- Definition Classes
- HasTransducerFeatures
-
def
get[T](feature: StructFeature[T]): Option[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
get[K, V](feature: MapFeature[K, V]): Option[Map[K, V]]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
get[T](feature: SetFeature[T]): Option[Set[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
get[T](feature: ArrayFeature[T]): Option[Array[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
- def getClassCandidates(transducer: ITransducer[Candidate], token: String, label: String, maxDist: Int, limit: Int = 2): Seq[(String, String, Float)]
- def getConfigProtoBytes: Option[Array[Byte]]
-
final
def
getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
def
getEngine: String
- Definition Classes
- HasEngine
-
def
getInputCols: Array[String]
- returns
input annotations columns currently used
- Definition Classes
- HasInputAnnotationCols
-
def
getLazyAnnotator: Boolean
- Definition Classes
- CanBeLazy
- def getModelIfNotSet: TensorflowSpell
-
final
def
getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
-
final
def
getOutputCol: String
Gets annotation column name going to generate
Gets annotation column name going to generate
- Definition Classes
- HasOutputAnnotationCol
-
def
getParam(paramName: String): Param[Any]
- Definition Classes
- Params
- def getVocabCandidates(token: String, maxDist: Int): List[(String, String, Float)]
- def getWordClasses: Seq[(String, AnnotatorType)]
-
final
def
hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
-
def
hasParam(paramName: String): Boolean
- Definition Classes
- Params
-
def
hasParent: Boolean
- Definition Classes
- Model
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
val
idsVocab: MapFeature[Int, String]
Mapping of ids to vocabulary
-
def
initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
def
initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
val
inputAnnotatorTypes: Array[String]
Input Annotator Types: TOKEN
Input Annotator Types: TOKEN
- Definition Classes
- ContextSpellCheckerModel → HasInputAnnotationCols
-
final
val
inputCols: StringArrayParam
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
final
def
isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
isSet(param: Param[_]): Boolean
- Definition Classes
- Params
-
def
isTraceEnabled(): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
val
lazyAnnotator: BooleanParam
- Definition Classes
- CanBeLazy
-
def
learnDist(s1: String, s2: String): Seq[(String, String)]
- Definition Classes
- WeightedLevenshtein
-
def
levenshteinDist(s11: String, s22: String)(cost: (String, String) ⇒ Float): Float
- Definition Classes
- WeightedLevenshtein
-
def
loadWeights(filename: String): Map[String, Map[String, Float]]
- Definition Classes
- WeightedLevenshtein
-
def
log: Logger
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logName: String
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
val
maxCandidates: IntParam
Maximum number of candidates for every word (Default:
6
). -
val
maxWindowLen: IntParam
Maximum size for the window used to remember history prior to every correction (Default:
5
). -
def
msgHelper(schema: StructType): String
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
onWrite(path: String, spark: SparkSession): Unit
- Definition Classes
- ContextSpellCheckerModel → ParamsAndFeaturesWritable
-
val
optionalInputAnnotatorTypes: Array[String]
- Definition Classes
- HasInputAnnotationCols
-
val
outputAnnotatorType: AnnotatorType
Output Annotator Types: TOKEN
Output Annotator Types: TOKEN
- Definition Classes
- ContextSpellCheckerModel → HasOutputAnnotatorType
-
final
val
outputCol: Param[String]
- Attributes
- protected
- Definition Classes
- HasOutputAnnotationCol
-
lazy val
params: Array[Param[_]]
- Definition Classes
- Params
-
var
parent: Estimator[ContextSpellCheckerModel]
- Definition Classes
- Model
-
def
save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @Since( "1.6.0" ) @throws( ... )
-
def
set(feature: TransducerSeqFeature, value: Seq[SpecialClassParser]): ContextSpellCheckerModel.this.type
- Attributes
- protected
- Definition Classes
- HasTransducerFeatures
-
def
set(feature: TransducerFeature, value: VocabParser): ContextSpellCheckerModel.this.type
- Attributes
- protected
- Definition Classes
- HasTransducerFeatures
-
def
set[T](feature: StructFeature[T], value: T): ContextSpellCheckerModel.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
set[K, V](feature: MapFeature[K, V], value: Map[K, V]): ContextSpellCheckerModel.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
set[T](feature: SetFeature[T], value: Set[T]): ContextSpellCheckerModel.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
set[T](feature: ArrayFeature[T], value: Array[T]): ContextSpellCheckerModel.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
set(paramPair: ParamPair[_]): ContextSpellCheckerModel.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set(param: String, value: Any): ContextSpellCheckerModel.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set[T](param: Param[T], value: T): ContextSpellCheckerModel.this.type
- Definition Classes
- Params
- def setCaseStrategy(k: Int): ContextSpellCheckerModel.this.type
- def setClasses(c: Map[Int, (Int, Int)]): ContextSpellCheckerModel.this.type
- def setCompareLowcase(value: Boolean): ContextSpellCheckerModel.this.type
- def setConfigProtoBytes(bytes: Array[Int]): ContextSpellCheckerModel.this.type
- def setCorrectSymbols(value: Boolean): ContextSpellCheckerModel.this.type
-
def
setDefault(feature: TransducerSeqFeature, value: () ⇒ Seq[SpecialClassParser]): ContextSpellCheckerModel.this.type
- Attributes
- protected
- Definition Classes
- HasTransducerFeatures
-
def
setDefault(feature: TransducerFeature, value: () ⇒ VocabParser): ContextSpellCheckerModel.this.type
- Attributes
- protected
- Definition Classes
- HasTransducerFeatures
-
def
setDefault[T](feature: StructFeature[T], value: () ⇒ T): ContextSpellCheckerModel.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
setDefault[K, V](feature: MapFeature[K, V], value: () ⇒ Map[K, V]): ContextSpellCheckerModel.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
setDefault[T](feature: SetFeature[T], value: () ⇒ Set[T]): ContextSpellCheckerModel.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
setDefault[T](feature: ArrayFeature[T], value: () ⇒ Array[T]): ContextSpellCheckerModel.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
setDefault(paramPairs: ParamPair[_]*): ContextSpellCheckerModel.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
setDefault[T](param: Param[T], value: T): ContextSpellCheckerModel.this.type
- Attributes
- protected[org.apache.spark.ml]
- Definition Classes
- Params
- def setErrorThreshold(t: Float): ContextSpellCheckerModel.this.type
- def setGamma(g: Float): ContextSpellCheckerModel.this.type
-
final
def
setInputCols(value: String*): ContextSpellCheckerModel.this.type
- Definition Classes
- HasInputAnnotationCols
-
def
setInputCols(value: Array[String]): ContextSpellCheckerModel.this.type
Overrides required annotators column if different than default
Overrides required annotators column if different than default
- Definition Classes
- HasInputAnnotationCols
-
def
setLazyAnnotator(value: Boolean): ContextSpellCheckerModel.this.type
- Definition Classes
- CanBeLazy
- def setMaxCandidates(k: Int): ContextSpellCheckerModel.this.type
- def setMaxWindowLen(w: Int): ContextSpellCheckerModel.this.type
- def setModelIfNotSet(spark: SparkSession, tensorflow: TensorflowWrapper): ContextSpellCheckerModel.this.type
-
final
def
setOutputCol(value: String): ContextSpellCheckerModel.this.type
Overrides annotation column name when transforming
Overrides annotation column name when transforming
- Definition Classes
- HasOutputAnnotationCol
-
def
setParent(parent: Estimator[ContextSpellCheckerModel]): ContextSpellCheckerModel
- Definition Classes
- Model
- def setSpecialClassesTransducers(transducers: Seq[SpecialClassParser]): ContextSpellCheckerModel.this.type
- def setTradeOff(lambda: Float): ContextSpellCheckerModel.this.type
- def setUseNewLines(useIt: Boolean): ContextSpellCheckerModel.this.type
- def setVocabFreq(v: Map[String, Double]): ContextSpellCheckerModel.this.type
- def setVocabIds(v: Map[String, Int]): ContextSpellCheckerModel.this.type
- def setVocabTransducer(trans: ITransducer[Candidate]): ContextSpellCheckerModel.this.type
- def setWeights(w: HashMap[String, HashMap[String, Double]]): ContextSpellCheckerModel.this.type
- def setWeights(w: Map[String, Map[String, Float]]): ContextSpellCheckerModel.this.type
- def setWordMaxDistance(k: Int): ContextSpellCheckerModel.this.type
- val specialTransducers: TransducerSeqFeature
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
- def toOption(boolean: Boolean): Option[Boolean]
-
def
toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
-
val
tradeoff: FloatParam
Tradeoff between the cost of a word and a transition in the language model (Default:
18.0f
). - val transducer: TransducerFeature
-
final
def
transform(dataset: Dataset[_]): DataFrame
Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content
Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content
- dataset
Dataset[Row]
- Definition Classes
- AnnotatorModel → Transformer
-
def
transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
- Definition Classes
- Transformer
- Annotations
- @Since( "2.0.0" )
-
def
transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
- Definition Classes
- Transformer
- Annotations
- @Since( "2.0.0" ) @varargs()
-
final
def
transformSchema(schema: StructType): StructType
requirement for pipeline transformation validation.
requirement for pipeline transformation validation. It is called on fit()
- Definition Classes
- RawAnnotator → PipelineStage
-
def
transformSchema(schema: StructType, logging: Boolean): StructType
- Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
-
val
uid: String
- Definition Classes
- ContextSpellCheckerModel → Identifiable
- def updateRegexClass(label: String, regex: String): ContextSpellCheckerModel
- def updateVocabClass(label: String, vocabList: ArrayList[String], append: Boolean = true): ContextSpellCheckerModel
-
val
useNewLines: BooleanParam
When set to true new lines will be treated as any other character (Default:
false
).When set to true new lines will be treated as any other character (Default:
false
). When set to false correction is applied on paragraphs as defined by newline characters. -
def
validate(schema: StructType): Boolean
takes a Dataset and checks to see if all the required annotation types are present.
takes a Dataset and checks to see if all the required annotation types are present.
- schema
to be validated
- returns
True if all the required types are present, else false
- Attributes
- protected
- Definition Classes
- RawAnnotator
-
val
vocabFreq: MapFeature[String, Double]
Frequency words from the vocabulary
-
val
vocabIds: MapFeature[String, Int]
Mapping of vocabulary to ids
-
def
wLevenshteinDist(s1: String, s2: String, weights: Map[String, Map[String, Float]]): Float
- Definition Classes
- WeightedLevenshtein
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
- val weights: MapFeature[String, Map[String, Float]]
-
val
wordMaxDistance: IntParam
Maximum distance for the generated candidates for every word, minimum 1.
-
def
wrapColumnMetadata(col: Column): Column
- Attributes
- protected
- Definition Classes
- RawAnnotator
-
def
write: MLWriter
- Definition Classes
- ParamsAndFeaturesWritable → DefaultParamsWritable → MLWritable
-
def
writeTensorflowHub(path: String, tfPath: String, spark: SparkSession, suffix: String = "_use"): Unit
- Definition Classes
- WriteTensorflowModel
-
def
writeTensorflowModel(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]] = None): Unit
- Definition Classes
- WriteTensorflowModel
-
def
writeTensorflowModelV2(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]] = None, savedSignatures: Option[Map[String, String]] = None): Unit
- Definition Classes
- WriteTensorflowModel
Inherited from HasEngine
Inherited from HasTransducerFeatures
Inherited from WriteTensorflowModel
Inherited from WeightedLevenshtein
Inherited from HasSimpleAnnotate[ContextSpellCheckerModel]
Inherited from AnnotatorModel[ContextSpellCheckerModel]
Inherited from CanBeLazy
Inherited from RawAnnotator[ContextSpellCheckerModel]
Inherited from HasOutputAnnotationCol
Inherited from HasInputAnnotationCols
Inherited from HasOutputAnnotatorType
Inherited from ParamsAndFeaturesWritable
Inherited from HasFeatures
Inherited from DefaultParamsWritable
Inherited from MLWritable
Inherited from Model[ContextSpellCheckerModel]
Inherited from Transformer
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.
Annotator types
Required input and expected output annotator types