class NerCrfApproach extends AnnotatorApproach[NerCrfModel] with NerApproach[NerCrfApproach]
Algorithm for training a Named Entity Recognition Model
For instantiated/pretrained models, see NerCrfModel.
This Named Entity recognition annotator allows for a generic model to be trained by utilizing
a CRF machine learning algorithm. The training data should be a labeled Spark Dataset, e.g.
CoNLL 2003 IOB with Annotation
type columns. The
data should have columns of type DOCUMENT, TOKEN, POS, WORD_EMBEDDINGS
and an additional
label column of annotator type NAMED_ENTITY
. Excluding the label, this can be done with for
example
- a SentenceDetector,
- a Tokenizer,
- a PerceptronModel and
- a WordEmbeddingsModel.
Optionally the user can provide an entity dictionary file with setExternalFeatures for better accuracy.
For extended examples of usage, see the Examples and the NerCrfApproachTestSpec.
Example
import com.johnsnowlabs.nlp.base.DocumentAssembler import com.johnsnowlabs.nlp.annotators.Tokenizer import com.johnsnowlabs.nlp.annotators.sbd.pragmatic.SentenceDetector import com.johnsnowlabs.nlp.embeddings.WordEmbeddingsModel import com.johnsnowlabs.nlp.annotators.pos.perceptron.PerceptronModel import com.johnsnowlabs.nlp.training.CoNLL import com.johnsnowlabs.nlp.annotator.NerCrfApproach import org.apache.spark.ml.Pipeline // This CoNLL dataset already includes a sentence, token, POS tags and label // column with their respective annotator types. If a custom dataset is used, // these need to be defined with for example: val documentAssembler = new DocumentAssembler() .setInputCol("text") .setOutputCol("document") val sentence = new SentenceDetector() .setInputCols("document") .setOutputCol("sentence") val tokenizer = new Tokenizer() .setInputCols("sentence") .setOutputCol("token") val posTagger = PerceptronModel.pretrained() .setInputCols("sentence", "token") .setOutputCol("pos") // Then the training can start val embeddings = WordEmbeddingsModel.pretrained() .setInputCols("sentence", "token") .setOutputCol("embeddings") .setCaseSensitive(false) val nerTagger = new NerCrfApproach() .setInputCols("sentence", "token", "pos", "embeddings") .setLabelColumn("label") .setMinEpochs(1) .setMaxEpochs(3) .setOutputCol("ner") val pipeline = new Pipeline().setStages(Array( embeddings, nerTagger )) // We use the sentences, tokens, POS tags and labels from the CoNLL dataset. val conll = CoNLL() val trainingData = conll.readDataset(spark, "src/test/resources/conll2003/eng.train") val pipelineModel = pipeline.fit(trainingData)
- See also
NerDLApproach for a deep learning based approach
NerConverter to further process the results
- Grouped
- Alphabetic
- By Inheritance
- NerCrfApproach
- NerApproach
- AnnotatorApproach
- CanBeLazy
- DefaultParamsWritable
- MLWritable
- HasOutputAnnotatorType
- HasOutputAnnotationCol
- HasInputAnnotationCols
- Estimator
- PipelineStage
- Logging
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
Type Members
-
type
AnnotatorType = String
- Definition Classes
- HasOutputAnnotatorType
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
$[T](param: Param[T]): T
- Attributes
- protected
- Definition Classes
- Params
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
_fit(dataset: Dataset[_], recursiveStages: Option[PipelineModel]): NerCrfModel
- Attributes
- protected
- Definition Classes
- AnnotatorApproach
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
beforeTraining(spark: SparkSession): Unit
- Definition Classes
- AnnotatorApproach
-
val
c0: IntParam
c0 params defining decay speed for gradient (Default:
2250000
) -
final
def
checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
final
def
clear(param: Param[_]): NerCrfApproach.this.type
- Definition Classes
- Params
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
final
def
copy(extra: ParamMap): Estimator[NerCrfModel]
- Definition Classes
- AnnotatorApproach → Estimator → PipelineStage → Params
-
def
copyValues[T <: Params](to: T, extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
final
def
defaultCopy[T <: Params](extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
val
description: String
CRF based Named Entity Recognition Tagger
CRF based Named Entity Recognition Tagger
- Definition Classes
- NerCrfApproach → AnnotatorApproach
-
val
entities: StringArrayParam
Entities to recognize
Entities to recognize
- Definition Classes
- NerApproach
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
explainParam(param: Param[_]): String
- Definition Classes
- Params
-
def
explainParams(): String
- Definition Classes
- Params
-
val
externalFeatures: ExternalResourceParam
Additional dictionary to use for features
-
final
def
extractParamMap(): ParamMap
- Definition Classes
- Params
-
final
def
extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
fit(dataset: Dataset[_]): NerCrfModel
- Definition Classes
- AnnotatorApproach → Estimator
-
def
fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[NerCrfModel]
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" )
-
def
fit(dataset: Dataset[_], paramMap: ParamMap): NerCrfModel
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" )
-
def
fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): NerCrfModel
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" ) @varargs()
-
final
def
get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
def
getC0: Int
c0 params defining decay speed for gradient
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
def
getIncludeConfidence: Boolean
Whether or not to calculate prediction confidence by token, includes in metadata
-
def
getInputCols: Array[String]
- returns
input annotations columns currently used
- Definition Classes
- HasInputAnnotationCols
-
def
getL2: Double
L2 regularization coefficient
-
def
getLazyAnnotator: Boolean
- Definition Classes
- CanBeLazy
-
def
getLossEps: Double
If Epoch relative improvement less than eps then training is stopped
-
def
getMaxEpochs: Int
Maximum number of epochs to train
Maximum number of epochs to train
- Definition Classes
- NerApproach
-
def
getMinEpochs: Int
Minimum number of epochs to train
Minimum number of epochs to train
- Definition Classes
- NerApproach
-
def
getMinW: Double
Features with less weights then this param value will be filtered
-
final
def
getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
-
final
def
getOutputCol: String
Gets annotation column name going to generate
Gets annotation column name going to generate
- Definition Classes
- HasOutputAnnotationCol
-
def
getParam(paramName: String): Param[Any]
- Definition Classes
- Params
-
def
getRandomSeed: Int
Random seed
Random seed
- Definition Classes
- NerApproach
-
final
def
hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
-
def
hasParam(paramName: String): Boolean
- Definition Classes
- Params
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
val
includeConfidence: BooleanParam
Whether or not to calculate prediction confidence by token, included in metadata (Default:
false
) -
def
initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
def
initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
val
inputAnnotatorTypes: Array[String]
Input annotator types : DOCUMENT, TOKEN, POS, WORD_EMBEDDINGS
Input annotator types : DOCUMENT, TOKEN, POS, WORD_EMBEDDINGS
- Definition Classes
- NerCrfApproach → HasInputAnnotationCols
-
final
val
inputCols: StringArrayParam
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
final
def
isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
isSet(param: Param[_]): Boolean
- Definition Classes
- Params
-
def
isTraceEnabled(): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
val
l2: DoubleParam
L2 regularization coefficient (Default:
1f
) -
val
labelColumn: Param[String]
Column with label per each token
Column with label per each token
- Definition Classes
- NerApproach
-
val
lazyAnnotator: BooleanParam
- Definition Classes
- CanBeLazy
-
def
log: Logger
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logName: String
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
val
lossEps: DoubleParam
If Epoch relative improvement is less than
lossEps
then training is stopped (Default:1e-3f
) -
val
maxEpochs: IntParam
Maximum number of epochs to train
Maximum number of epochs to train
- Definition Classes
- NerApproach
-
val
minEpochs: IntParam
Minimum number of epochs to train
Minimum number of epochs to train
- Definition Classes
- NerApproach
-
val
minW: DoubleParam
Features with less weights then this param value will be filtered
-
def
msgHelper(schema: StructType): String
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
onTrained(model: NerCrfModel, spark: SparkSession): Unit
- Definition Classes
- AnnotatorApproach
-
val
optionalInputAnnotatorTypes: Array[String]
- Definition Classes
- HasInputAnnotationCols
-
val
outputAnnotatorType: AnnotatorType
Output annotator types : NAMED_ENTITY
Output annotator types : NAMED_ENTITY
- Definition Classes
- NerCrfApproach → HasOutputAnnotatorType
-
final
val
outputCol: Param[String]
- Attributes
- protected
- Definition Classes
- HasOutputAnnotationCol
-
lazy val
params: Array[Param[_]]
- Definition Classes
- Params
-
val
randomSeed: IntParam
Random seed
Random seed
- Definition Classes
- NerApproach
-
def
save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @Since( "1.6.0" ) @throws( ... )
-
final
def
set(paramPair: ParamPair[_]): NerCrfApproach.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set(param: String, value: Any): NerCrfApproach.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set[T](param: Param[T], value: T): NerCrfApproach.this.type
- Definition Classes
- Params
-
def
setC0(c0: Int): NerCrfApproach.this.type
c0 params defining decay speed for gradient
-
final
def
setDefault(paramPairs: ParamPair[_]*): NerCrfApproach.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
setDefault[T](param: Param[T], value: T): NerCrfApproach.this.type
- Attributes
- protected[org.apache.spark.ml]
- Definition Classes
- Params
-
def
setEntities(tags: Array[String]): NerCrfApproach
Entities to recognize
Entities to recognize
- Definition Classes
- NerApproach
-
def
setExternalFeatures(path: String, delimiter: String, readAs: Format = ReadAs.TEXT, options: Map[String, String] = Map("format" -> "text")): NerCrfApproach.this.type
Additional dictionary to use for features
-
def
setExternalFeatures(value: ExternalResource): NerCrfApproach.this.type
Additional dictionary to use for features
-
def
setIncludeConfidence(c: Boolean): NerCrfApproach.this.type
Whether or not to calculate prediction confidence by token, includes in metadata
-
final
def
setInputCols(value: String*): NerCrfApproach.this.type
- Definition Classes
- HasInputAnnotationCols
-
def
setInputCols(value: Array[String]): NerCrfApproach.this.type
Overrides required annotators column if different than default
Overrides required annotators column if different than default
- Definition Classes
- HasInputAnnotationCols
-
def
setL2(l2: Double): NerCrfApproach.this.type
L2 regularization coefficient
-
def
setLabelColumn(column: String): NerCrfApproach
Column with label per each token
Column with label per each token
- Definition Classes
- NerApproach
-
def
setLazyAnnotator(value: Boolean): NerCrfApproach.this.type
- Definition Classes
- CanBeLazy
-
def
setLossEps(eps: Double): NerCrfApproach.this.type
If Epoch relative improvement less than eps then training is stopped
-
def
setMaxEpochs(epochs: Int): NerCrfApproach
Maximum number of epochs to train
Maximum number of epochs to train
- Definition Classes
- NerApproach
-
def
setMinEpochs(epochs: Int): NerCrfApproach
Minimum number of epochs to train
Minimum number of epochs to train
- Definition Classes
- NerApproach
-
def
setMinW(w: Double): NerCrfApproach.this.type
Features with less weights then this param value will be filtered
-
final
def
setOutputCol(value: String): NerCrfApproach.this.type
Overrides annotation column name when transforming
Overrides annotation column name when transforming
- Definition Classes
- HasOutputAnnotationCol
-
def
setRandomSeed(seed: Int): NerCrfApproach
Random seed
Random seed
- Definition Classes
- NerApproach
-
def
setVerbose(verbose: Level): NerCrfApproach.this.type
Level of verbosity during training (Default:
Verbose.Silent.id
) -
def
setVerbose(verbose: Int): NerCrfApproach.this.type
Level of verbosity during training (Default:
Verbose.Silent.id
) -
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
-
def
train(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): NerCrfModel
- Definition Classes
- NerCrfApproach → AnnotatorApproach
-
final
def
transformSchema(schema: StructType): StructType
requirement for pipeline transformation validation.
requirement for pipeline transformation validation. It is called on fit()
- Definition Classes
- AnnotatorApproach → PipelineStage
-
def
transformSchema(schema: StructType, logging: Boolean): StructType
- Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
-
val
uid: String
- Definition Classes
- NerCrfApproach → Identifiable
-
def
validate(schema: StructType): Boolean
takes a Dataset and checks to see if all the required annotation types are present.
takes a Dataset and checks to see if all the required annotation types are present.
- schema
to be validated
- returns
True if all the required types are present, else false
- Attributes
- protected
- Definition Classes
- AnnotatorApproach
-
val
verbose: IntParam
Level of verbosity during training (Default:
Verbose.Silent.id
) -
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
def
write: MLWriter
- Definition Classes
- DefaultParamsWritable → MLWritable
Inherited from NerApproach[NerCrfApproach]
Inherited from AnnotatorApproach[NerCrfModel]
Inherited from CanBeLazy
Inherited from DefaultParamsWritable
Inherited from MLWritable
Inherited from HasOutputAnnotatorType
Inherited from HasOutputAnnotationCol
Inherited from HasInputAnnotationCols
Inherited from Estimator[NerCrfModel]
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.
Annotator types
Required input and expected output annotator types