class NerDLApproach extends AnnotatorApproach[NerDLModel] with NerApproach[NerDLApproach] with Logging with ParamsAndFeaturesWritable with EvaluationDLParams
This Named Entity recognition annotator allows to train generic NER model based on Neural Networks.
The architecture of the neural network is a Char CNNs - BiLSTM - CRF that achieves state-of-the-art in most datasets.
For instantiated/pretrained models, see NerDLModel.
The training data should be a labeled Spark Dataset, in the format of
CoNLL 2003 IOB with Annotation
type columns. The
data should have columns of type DOCUMENT, TOKEN, WORD_EMBEDDINGS
and an additional label
column of annotator type NAMED_ENTITY
. Excluding the label, this can be done with for
example
- a SentenceDetector,
- a Tokenizer and
- a WordEmbeddingsModel (any embeddings can be chosen, e.g. BertEmbeddings for BERT based embeddings).
Setting a test dataset to monitor model metrics can be done with .setTestDataset
. The method
expects a path to a parquet file containing a dataframe that has the same required columns as
the training dataframe. The pre-processing steps for the training dataframe should also be
applied to the test dataframe. The following example will show how to create the test dataset
with a CoNLL dataset:
val documentAssembler = new DocumentAssembler() .setInputCol("text") .setOutputCol("document") val embeddings = WordEmbeddingsModel .pretrained() .setInputCols("document", "token") .setOutputCol("embeddings") val preProcessingPipeline = new Pipeline().setStages(Array(documentAssembler, embeddings)) val conll = CoNLL() val Array(train, test) = conll .readDataset(spark, "src/test/resources/conll2003/eng.train") .randomSplit(Array(0.8, 0.2)) preProcessingPipeline .fit(test) .transform(test) .write .mode("overwrite") .parquet("test_data") val nerTagger = new NerDLApproach() .setInputCols("document", "token", "embeddings") .setLabelColumn("label") .setOutputCol("ner") .setTestDataset("test_data")
For extended examples of usage, see the Examples and the NerDLSpec.
Example
import com.johnsnowlabs.nlp.base.DocumentAssembler import com.johnsnowlabs.nlp.annotators.Tokenizer import com.johnsnowlabs.nlp.annotators.sbd.pragmatic.SentenceDetector import com.johnsnowlabs.nlp.embeddings.BertEmbeddings import com.johnsnowlabs.nlp.annotators.ner.dl.NerDLApproach import com.johnsnowlabs.nlp.training.CoNLL import org.apache.spark.ml.Pipeline // This CoNLL dataset already includes a sentence, token and label // column with their respective annotator types. If a custom dataset is used, // these need to be defined with for example: val documentAssembler = new DocumentAssembler() .setInputCol("text") .setOutputCol("document") val sentence = new SentenceDetector() .setInputCols("document") .setOutputCol("sentence") val tokenizer = new Tokenizer() .setInputCols("sentence") .setOutputCol("token") // Then the training can start val embeddings = BertEmbeddings.pretrained() .setInputCols("sentence", "token") .setOutputCol("embeddings") val nerTagger = new NerDLApproach() .setInputCols("sentence", "token", "embeddings") .setLabelColumn("label") .setOutputCol("ner") .setMaxEpochs(1) .setRandomSeed(0) .setVerbose(0) val pipeline = new Pipeline().setStages(Array( embeddings, nerTagger )) // We use the sentences, tokens and labels from the CoNLL dataset val conll = CoNLL() val trainingData = conll.readDataset(spark, "src/test/resources/conll2003/eng.train") val pipelineModel = pipeline.fit(trainingData)
- See also
NerCrfApproach for a generic CRF approach
NerConverter to further process the results
- Grouped
- Alphabetic
- By Inheritance
- NerDLApproach
- EvaluationDLParams
- ParamsAndFeaturesWritable
- HasFeatures
- Logging
- NerApproach
- AnnotatorApproach
- CanBeLazy
- DefaultParamsWritable
- MLWritable
- HasOutputAnnotatorType
- HasOutputAnnotationCol
- HasInputAnnotationCols
- Estimator
- PipelineStage
- Logging
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
Type Members
-
type
AnnotatorType = String
- Definition Classes
- HasOutputAnnotatorType
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
$[T](param: Param[T]): T
- Attributes
- protected
- Definition Classes
- Params
-
def
$$[T](feature: StructFeature[T]): T
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
$$[K, V](feature: MapFeature[K, V]): Map[K, V]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
$$[T](feature: SetFeature[T]): Set[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
$$[T](feature: ArrayFeature[T]): Array[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
_fit(dataset: Dataset[_], recursiveStages: Option[PipelineModel]): NerDLModel
- Attributes
- protected
- Definition Classes
- AnnotatorApproach
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
val
batchSize: IntParam
Batch size (Default:
8
) -
def
beforeTraining(spark: SparkSession): Unit
- Definition Classes
- NerDLApproach → AnnotatorApproach
-
val
bestModelMetric: Param[String]
Whether to check F1 Micro-average or F1 Macro-average as a final metric for the best model This will fall back to loss if there is no validation or test dataset
- def calculateEmbeddingsDim(sentences: Seq[WordpieceEmbeddingsSentence]): Int
-
final
def
checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
final
def
clear(param: Param[_]): NerDLApproach.this.type
- Definition Classes
- Params
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
val
configProtoBytes: IntArrayParam
ConfigProto from tensorflow, serialized into byte array.
ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()
-
final
def
copy(extra: ParamMap): Estimator[NerDLModel]
- Definition Classes
- AnnotatorApproach → Estimator → PipelineStage → Params
-
def
copyValues[T <: Params](to: T, extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
final
def
defaultCopy[T <: Params](extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
val
description: String
Trains Tensorflow based Char-CNN-BLSTM model
Trains Tensorflow based Char-CNN-BLSTM model
- Definition Classes
- NerDLApproach → AnnotatorApproach
-
val
dropout: FloatParam
Dropout coefficient (Default:
0.5f
) -
val
enableMemoryOptimizer: BooleanParam
Whether to optimize for large datasets or not (Default:
false
).Whether to optimize for large datasets or not (Default:
false
). Enabling this option can slow down training. -
val
enableOutputLogs: BooleanParam
Whether to output to annotators log folder (Default:
false
)Whether to output to annotators log folder (Default:
false
)- Definition Classes
- EvaluationDLParams
-
val
entities: StringArrayParam
Entities to recognize
Entities to recognize
- Definition Classes
- NerApproach
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
val
evaluationLogExtended: BooleanParam
Whether logs for validation to be extended (Default:
false
): it displays time and evaluation of each labelWhether logs for validation to be extended (Default:
false
): it displays time and evaluation of each label- Definition Classes
- EvaluationDLParams
-
def
explainParam(param: Param[_]): String
- Definition Classes
- Params
-
def
explainParams(): String
- Definition Classes
- Params
-
final
def
extractParamMap(): ParamMap
- Definition Classes
- Params
-
final
def
extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
-
val
features: ArrayBuffer[Feature[_, _, _]]
- Definition Classes
- HasFeatures
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
fit(dataset: Dataset[_]): NerDLModel
- Definition Classes
- AnnotatorApproach → Estimator
-
def
fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[NerDLModel]
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" )
-
def
fit(dataset: Dataset[_], paramMap: ParamMap): NerDLModel
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" )
-
def
fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): NerDLModel
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" ) @varargs()
-
def
get[T](feature: StructFeature[T]): Option[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
get[K, V](feature: MapFeature[K, V]): Option[Map[K, V]]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
get[T](feature: SetFeature[T]): Option[Set[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
get[T](feature: ArrayFeature[T]): Option[Array[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
def
getBatchSize: Int
Batch size
- def getBestModelMetric: String
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
getConfigProtoBytes: Option[Array[Byte]]
ConfigProto from tensorflow, serialized into byte array.
ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()
-
final
def
getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
def
getDropout: Float
Dropout coefficient
-
def
getEnableMemoryOptimizer: Boolean
Memory Optimizer
-
def
getEnableOutputLogs: Boolean
Whether to output to annotators log folder (Default:
false
)Whether to output to annotators log folder (Default:
false
)- Definition Classes
- EvaluationDLParams
-
def
getInputCols: Array[String]
- returns
input annotations columns currently used
- Definition Classes
- HasInputAnnotationCols
-
def
getLazyAnnotator: Boolean
- Definition Classes
- CanBeLazy
-
def
getLogName: String
- Definition Classes
- NerDLApproach → Logging
-
def
getLr: Float
Learning Rate
-
def
getMaxEpochs: Int
Maximum number of epochs to train
Maximum number of epochs to train
- Definition Classes
- NerApproach
-
def
getMinEpochs: Int
Minimum number of epochs to train
Minimum number of epochs to train
- Definition Classes
- NerApproach
-
final
def
getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
-
final
def
getOutputCol: String
Gets annotation column name going to generate
Gets annotation column name going to generate
- Definition Classes
- HasOutputAnnotationCol
-
def
getOutputLogsPath: String
Folder path to save training logs (Default:
""
)Folder path to save training logs (Default:
""
)- Definition Classes
- EvaluationDLParams
-
def
getParam(paramName: String): Param[Any]
- Definition Classes
- Params
-
def
getPo: Float
Learning rate decay coefficient.
Learning rate decay coefficient. Real Learning Rage = lr / (1 + po * epoch)
-
def
getRandomSeed: Int
Random seed
Random seed
- Definition Classes
- NerApproach
-
def
getUseBestModel: Boolean
useBestModel
-
def
getUseContrib: Boolean
Whether to use contrib LSTM Cells.
Whether to use contrib LSTM Cells. Not compatible with Windows. Might slightly improve accuracy.
-
def
getValidationSplit: Float
Choose the proportion of training dataset to be validated against the model on each Epoch (Default:
0.0f
).Choose the proportion of training dataset to be validated against the model on each Epoch (Default:
0.0f
). The value should be between 0.0 and 1.0 and by default it is 0.0 and off.- Definition Classes
- EvaluationDLParams
-
val
graphFolder: Param[String]
Folder path that contain external graph files
-
final
def
hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
-
def
hasParam(paramName: String): Boolean
- Definition Classes
- Params
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
val
includeAllConfidenceScores: BooleanParam
whether to include all confidence scores in annotation metadata or just score of the predicted tag
-
val
includeConfidence: BooleanParam
Whether to include confidence scores in annotation metadata (Default:
false
) -
def
initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
def
initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
val
inputAnnotatorTypes: Array[String]
Input annotator types: DOCUMENT, TOKEN, WORD_EMBEDDINGS
Input annotator types: DOCUMENT, TOKEN, WORD_EMBEDDINGS
- Definition Classes
- NerDLApproach → HasInputAnnotationCols
-
final
val
inputCols: StringArrayParam
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
final
def
isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
isSet(param: Param[_]): Boolean
- Definition Classes
- Params
-
def
isTraceEnabled(): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
val
labelColumn: Param[String]
Column with label per each token
Column with label per each token
- Definition Classes
- NerApproach
-
val
lazyAnnotator: BooleanParam
- Definition Classes
- CanBeLazy
-
def
log(value: ⇒ String, minLevel: Level): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
log: Logger
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logName: String
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
val
logger: Logger
- Attributes
- protected
- Definition Classes
- Logging
-
val
lr: FloatParam
Learning Rate (Default:
1e-3f
) -
val
maxEpochs: IntParam
Maximum number of epochs to train
Maximum number of epochs to train
- Definition Classes
- NerApproach
-
val
minEpochs: IntParam
Minimum number of epochs to train
Minimum number of epochs to train
- Definition Classes
- NerApproach
-
def
msgHelper(schema: StructType): String
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
onTrained(model: NerDLModel, spark: SparkSession): Unit
- Definition Classes
- AnnotatorApproach
-
def
onWrite(path: String, spark: SparkSession): Unit
- Attributes
- protected
- Definition Classes
- ParamsAndFeaturesWritable
-
val
optionalInputAnnotatorTypes: Array[String]
- Definition Classes
- HasInputAnnotationCols
-
val
outputAnnotatorType: String
Output annotator types: NAMED_ENTITY
Output annotator types: NAMED_ENTITY
- Definition Classes
- NerDLApproach → HasOutputAnnotatorType
-
final
val
outputCol: Param[String]
- Attributes
- protected
- Definition Classes
- HasOutputAnnotationCol
-
def
outputLog(value: ⇒ String, uuid: String, shouldLog: Boolean, outputLogsPath: String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
val
outputLogsPath: Param[String]
Folder path to save training logs (Default:
""
)Folder path to save training logs (Default:
""
)- Definition Classes
- EvaluationDLParams
-
lazy val
params: Array[Param[_]]
- Definition Classes
- Params
-
val
po: FloatParam
Learning rate decay coefficient (Default:
0.005f
).Learning rate decay coefficient (Default:
0.005f
). Real Learning Rate calculates tolr / (1 + po * epoch)
-
val
randomSeed: IntParam
Random seed
Random seed
- Definition Classes
- NerApproach
-
def
save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @Since( "1.6.0" ) @throws( ... )
-
def
set[T](feature: StructFeature[T], value: T): NerDLApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
set[K, V](feature: MapFeature[K, V], value: Map[K, V]): NerDLApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
set[T](feature: SetFeature[T], value: Set[T]): NerDLApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
set[T](feature: ArrayFeature[T], value: Array[T]): NerDLApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
set(paramPair: ParamPair[_]): NerDLApproach.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set(param: String, value: Any): NerDLApproach.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set[T](param: Param[T], value: T): NerDLApproach.this.type
- Definition Classes
- Params
-
def
setBatchSize(batch: Int): NerDLApproach.this.type
Batch size
- def setBestModelMetric(value: String): NerDLApproach.this.type
-
def
setConfigProtoBytes(bytes: Array[Int]): NerDLApproach.this.type
ConfigProto from tensorflow, serialized into byte array.
ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()
-
def
setDefault[T](feature: StructFeature[T], value: () ⇒ T): NerDLApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
setDefault[K, V](feature: MapFeature[K, V], value: () ⇒ Map[K, V]): NerDLApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
setDefault[T](feature: SetFeature[T], value: () ⇒ Set[T]): NerDLApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
setDefault[T](feature: ArrayFeature[T], value: () ⇒ Array[T]): NerDLApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
setDefault(paramPairs: ParamPair[_]*): NerDLApproach.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
setDefault[T](param: Param[T], value: T): NerDLApproach.this.type
- Attributes
- protected[org.apache.spark.ml]
- Definition Classes
- Params
-
def
setDropout(dropout: Float): NerDLApproach.this.type
Dropout coefficient
-
def
setEnableMemoryOptimizer(value: Boolean): NerDLApproach.this.type
Whether to optimize for large datasets or not.
Whether to optimize for large datasets or not. Enabling this option can slow down training.
-
def
setEnableOutputLogs(enableOutputLogs: Boolean): NerDLApproach.this.type
Whether to output to annotators log folder (Default:
false
)Whether to output to annotators log folder (Default:
false
)- Definition Classes
- EvaluationDLParams
-
def
setEntities(tags: Array[String]): NerDLApproach
Entities to recognize
Entities to recognize
- Definition Classes
- NerApproach
-
def
setEvaluationLogExtended(evaluationLogExtended: Boolean): NerDLApproach.this.type
Whether logs for validation to be extended: it displays time and evaluation of each label.
Whether logs for validation to be extended: it displays time and evaluation of each label. Default is false.
- Definition Classes
- EvaluationDLParams
-
def
setGraphFolder(path: String): NerDLApproach.this.type
Folder path that contain external graph files
-
def
setIncludeAllConfidenceScores(value: Boolean): NerDLApproach.this.type
whether to include confidence scores for all tags rather than just for the predicted one
-
def
setIncludeConfidence(value: Boolean): NerDLApproach.this.type
Whether to include confidence scores in annotation metadata
-
final
def
setInputCols(value: String*): NerDLApproach.this.type
- Definition Classes
- HasInputAnnotationCols
-
def
setInputCols(value: Array[String]): NerDLApproach.this.type
Overrides required annotators column if different than default
Overrides required annotators column if different than default
- Definition Classes
- HasInputAnnotationCols
-
def
setLabelColumn(column: String): NerDLApproach
Column with label per each token
Column with label per each token
- Definition Classes
- NerApproach
-
def
setLazyAnnotator(value: Boolean): NerDLApproach.this.type
- Definition Classes
- CanBeLazy
-
def
setLr(lr: Float): NerDLApproach.this.type
Learning Rate
-
def
setMaxEpochs(epochs: Int): NerDLApproach
Maximum number of epochs to train
Maximum number of epochs to train
- Definition Classes
- NerApproach
-
def
setMinEpochs(epochs: Int): NerDLApproach
Minimum number of epochs to train
Minimum number of epochs to train
- Definition Classes
- NerApproach
-
final
def
setOutputCol(value: String): NerDLApproach.this.type
Overrides annotation column name when transforming
Overrides annotation column name when transforming
- Definition Classes
- HasOutputAnnotationCol
-
def
setOutputLogsPath(path: String): NerDLApproach.this.type
Folder path to save training logs (Default:
""
)Folder path to save training logs (Default:
""
)- Definition Classes
- EvaluationDLParams
-
def
setPo(po: Float): NerDLApproach.this.type
Learning rate decay coefficient.
Learning rate decay coefficient. Real Learning Rage = lr / (1 + po * epoch)
-
def
setRandomSeed(seed: Int): NerDLApproach
Random seed
Random seed
- Definition Classes
- NerApproach
-
def
setTestDataset(er: ExternalResource): NerDLApproach.this.type
ExternalResource to a parquet file of a test dataset.
ExternalResource to a parquet file of a test dataset. If set, it is used to calculate statistics on it during training.
When using an ExternalResource, only parquet files are accepted for this function.
The parquet file must be a dataframe that has the same columns as the model that is being trained. For example, if the model needs as input
DOCUMENT
,TOKEN
,WORD_EMBEDDINGS
(Features) andNAMED_ENTITY
(label) then these columns also need to be present while saving the dataframe. The pre-processing steps for the training dataframe should also be applied to the test dataframe.An example on how to create such a parquet file could be:
// assuming preProcessingPipeline val Array(train, test) = data.randomSplit(Array(0.8, 0.2)) preProcessingPipeline .fit(test) .transform(test) .write .mode("overwrite") .parquet("test_data") annotator.setTestDataset("test_data")
- Definition Classes
- EvaluationDLParams
-
def
setTestDataset(path: String, readAs: Format = ReadAs.SPARK, options: Map[String, String] = Map("format" -> "parquet")): NerDLApproach.this.type
Path to a parquet file of a test dataset.
Path to a parquet file of a test dataset. If set, it is used to calculate statistics on it during training.
The parquet file must be a dataframe that has the same columns as the model that is being trained. For example, if the model needs as input
DOCUMENT
,TOKEN
,WORD_EMBEDDINGS
(Features) andNAMED_ENTITY
(label) then these columns also need to be present while saving the dataframe. The pre-processing steps for the training dataframe should also be applied to the test dataframe.An example on how to create such a parquet file could be:
// assuming preProcessingPipeline val Array(train, test) = data.randomSplit(Array(0.8, 0.2)) preProcessingPipeline .fit(test) .transform(test) .write .mode("overwrite") .parquet("test_data") annotator.setTestDataset("test_data")
- Definition Classes
- EvaluationDLParams
- def setUseBestModel(value: Boolean): NerDLApproach.this.type
-
def
setUseContrib(value: Boolean): NerDLApproach.this.type
Whether to use contrib LSTM Cells.
Whether to use contrib LSTM Cells. Not compatible with Windows. Might slightly improve accuracy.
-
def
setValidationSplit(validationSplit: Float): NerDLApproach.this.type
Choose the proportion of training dataset to be validated against the model on each Epoch (Default:
0.0f
).Choose the proportion of training dataset to be validated against the model on each Epoch (Default:
0.0f
). The value should be between 0.0 and 1.0 and by default it is 0.0 and off.- Definition Classes
- EvaluationDLParams
-
def
setVerbose(verbose: Level): NerDLApproach.this.type
Level of verbosity during training (Default:
Verbose.Silent.id
)Level of verbosity during training (Default:
Verbose.Silent.id
)- Definition Classes
- EvaluationDLParams
-
def
setVerbose(verbose: Int): NerDLApproach.this.type
Level of verbosity during training (Default:
Verbose.Silent.id
)Level of verbosity during training (Default:
Verbose.Silent.id
)- Definition Classes
- EvaluationDLParams
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
val
testDataset: ExternalResourceParam
Path to a parquet file of a test dataset.
Path to a parquet file of a test dataset. If set, it is used to calculate statistics on it during training.
- Definition Classes
- EvaluationDLParams
-
def
toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
-
def
train(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): NerDLModel
- Definition Classes
- NerDLApproach → AnnotatorApproach
-
final
def
transformSchema(schema: StructType): StructType
requirement for pipeline transformation validation.
requirement for pipeline transformation validation. It is called on fit()
- Definition Classes
- AnnotatorApproach → PipelineStage
-
def
transformSchema(schema: StructType, logging: Boolean): StructType
- Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
-
val
uid: String
- Definition Classes
- NerDLApproach → Identifiable
-
val
useBestModel: BooleanParam
Whether to restore and use the model that has achieved the best performance at the end of the training.
Whether to restore and use the model that has achieved the best performance at the end of the training. The metric that is being monitored is F1 for testDataset and if it's not set it will be validationSplit, and if it's not set finally looks for loss.
-
val
useContrib: BooleanParam
Whether to use contrib LSTM Cells (Default:
true
).Whether to use contrib LSTM Cells (Default:
true
). Not compatible with Windows. Might slightly improve accuracy. This param is deprecated and only exists for backward compatibility -
def
validate(schema: StructType): Boolean
takes a Dataset and checks to see if all the required annotation types are present.
takes a Dataset and checks to see if all the required annotation types are present.
- schema
to be validated
- returns
True if all the required types are present, else false
- Attributes
- protected
- Definition Classes
- AnnotatorApproach
-
val
validationSplit: FloatParam
Choose the proportion of training dataset to be validated against the model on each Epoch (Default:
0.0f
).Choose the proportion of training dataset to be validated against the model on each Epoch (Default:
0.0f
). The value should be between 0.0 and 1.0 and by default it is 0.0 and off.- Definition Classes
- EvaluationDLParams
-
val
verbose: IntParam
Level of verbosity during training (Default:
Verbose.Silent.id
)Level of verbosity during training (Default:
Verbose.Silent.id
)- Definition Classes
- EvaluationDLParams
-
val
verboseLevel: Level
- Definition Classes
- NerDLApproach → Logging
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
def
write: MLWriter
- Definition Classes
- ParamsAndFeaturesWritable → DefaultParamsWritable → MLWritable
Inherited from EvaluationDLParams
Inherited from ParamsAndFeaturesWritable
Inherited from HasFeatures
Inherited from Logging
Inherited from NerApproach[NerDLApproach]
Inherited from AnnotatorApproach[NerDLModel]
Inherited from CanBeLazy
Inherited from DefaultParamsWritable
Inherited from MLWritable
Inherited from HasOutputAnnotatorType
Inherited from HasOutputAnnotationCol
Inherited from HasInputAnnotationCols
Inherited from Estimator[NerDLModel]
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.
Annotator types
Required input and expected output annotator types