Packages

class WordEmbeddingsModel extends AnnotatorModel[WordEmbeddingsModel] with HasSimpleAnnotate[WordEmbeddingsModel] with HasEmbeddingsProperties with HasStorageModel with ParamsAndFeaturesWritable with ReadsFromBytes

Word Embeddings lookup annotator that maps tokens to vectors

This is the instantiated model of WordEmbeddings.

Pretrained models can be loaded with pretrained of the companion object:

val embeddings = WordEmbeddingsModel.pretrained()
    .setInputCols("document", "token")
    .setOutputCol("embeddings")

The default model is "glove_100d", if no name is provided. For available pretrained models please see the Models Hub.

There are also two convenient functions to retrieve the embeddings coverage with respect to the transformed dataset:

  • withCoverageColumn(dataset, embeddingsCol, outputCol): Adds a custom column with word coverage stats for the embedded field: (coveredWords, totalWords, coveragePercentage). This creates a new column with statistics for each row.
val wordsCoverage = WordEmbeddingsModel.withCoverageColumn(resultDF, "embeddings", "cov_embeddings")
wordsCoverage.select("text","cov_embeddings").show(false)
+-------------------+--------------+
|text               |cov_embeddings|
+-------------------+--------------+
|This is a sentence.|[5, 5, 1.0]   |
+-------------------+--------------+
  • overallCoverage(dataset, embeddingsCol): Calculates overall word coverage for the whole data in the embedded field. This returns a single coverage object considering all rows in the field.
val wordsOverallCoverage = WordEmbeddingsModel.overallCoverage(wordsCoverage,"embeddings").percentage
1.0

For extended examples of usage, see the Examples and the WordEmbeddingsTestSpec.

Example

import spark.implicits._
import com.johnsnowlabs.nlp.base.DocumentAssembler
import com.johnsnowlabs.nlp.annotators.Tokenizer
import com.johnsnowlabs.nlp.embeddings.WordEmbeddingsModel
import com.johnsnowlabs.nlp.EmbeddingsFinisher
import org.apache.spark.ml.Pipeline

val documentAssembler = new DocumentAssembler()
  .setInputCol("text")
  .setOutputCol("document")

val tokenizer = new Tokenizer()
  .setInputCols(Array("document"))
  .setOutputCol("token")

val embeddings = WordEmbeddingsModel.pretrained()
  .setInputCols("document", "token")
  .setOutputCol("embeddings")

val embeddingsFinisher = new EmbeddingsFinisher()
  .setInputCols("embeddings")
  .setOutputCols("finished_embeddings")
  .setOutputAsVector(true)
  .setCleanAnnotations(false)

val pipeline = new Pipeline()
  .setStages(Array(
    documentAssembler,
    tokenizer,
    embeddings,
    embeddingsFinisher
  ))

val data = Seq("This is a sentence.").toDF("text")
val result = pipeline.fit(data).transform(data)

result.selectExpr("explode(finished_embeddings) as result").show(5, 80)
+--------------------------------------------------------------------------------+
|                                                                          result|
+--------------------------------------------------------------------------------+
|[-0.570580005645752,0.44183000922203064,0.7010200023651123,-0.417129993438720...|
|[-0.542639970779419,0.4147599935531616,1.0321999788284302,-0.4024400115013122...|
|[-0.2708599865436554,0.04400600120425224,-0.020260000601410866,-0.17395000159...|
|[0.6191999912261963,0.14650000631809235,-0.08592499792575836,-0.2629800140857...|
|[-0.3397899866104126,0.20940999686717987,0.46347999572753906,-0.6479200124740...|
+--------------------------------------------------------------------------------+
See also

SentenceEmbeddings to combine embeddings into a sentence-level representation

Annotators Main Page for a list of transformer based embeddings

Ordering
  1. Grouped
  2. Alphabetic
  3. By Inheritance
Inherited
  1. WordEmbeddingsModel
  2. ReadsFromBytes
  3. HasStorageModel
  4. HasStorageOptions
  5. HasStorageReader
  6. HasCaseSensitiveProperties
  7. HasStorageRef
  8. HasEmbeddingsProperties
  9. HasProtectedParams
  10. HasSimpleAnnotate
  11. AnnotatorModel
  12. CanBeLazy
  13. RawAnnotator
  14. HasOutputAnnotationCol
  15. HasInputAnnotationCols
  16. HasOutputAnnotatorType
  17. ParamsAndFeaturesWritable
  18. HasFeatures
  19. DefaultParamsWritable
  20. MLWritable
  21. Model
  22. Transformer
  23. PipelineStage
  24. Logging
  25. Params
  26. Serializable
  27. Serializable
  28. Identifiable
  29. AnyRef
  30. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new WordEmbeddingsModel()

    Annotator reference id.

    Annotator reference id. Used to identify elements in metadata or to refer to this annotator type

  2. new WordEmbeddingsModel(uid: String)

Type Members

  1. implicit class ProtectedParam[T] extends Param[T]
    Definition Classes
    HasProtectedParams
  2. type AnnotationContent = Seq[Row]

    internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI

    internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI

    Attributes
    protected
    Definition Classes
    AnnotatorModel
  3. type AnnotatorType = String
    Definition Classes
    HasOutputAnnotatorType

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def $[T](param: Param[T]): T
    Attributes
    protected
    Definition Classes
    Params
  4. def $$[T](feature: StructFeature[T]): T
    Attributes
    protected
    Definition Classes
    HasFeatures
  5. def $$[K, V](feature: MapFeature[K, V]): Map[K, V]
    Attributes
    protected
    Definition Classes
    HasFeatures
  6. def $$[T](feature: SetFeature[T]): Set[T]
    Attributes
    protected
    Definition Classes
    HasFeatures
  7. def $$[T](feature: ArrayFeature[T]): Array[T]
    Attributes
    protected
    Definition Classes
    HasFeatures
  8. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  9. def _transform(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): DataFrame
    Attributes
    protected
    Definition Classes
    AnnotatorModel
  10. def afterAnnotate(dataset: DataFrame): DataFrame
    Attributes
    protected
    Definition Classes
    WordEmbeddingsModelAnnotatorModel
  11. def annotate(annotations: Seq[Annotation]): Seq[Annotation]

    Takes a document and annotations and produces new annotations of this annotator's annotation type

    Takes a document and annotations and produces new annotations of this annotator's annotation type

    annotations

    Annotations that correspond to inputAnnotationCols generated by previous annotators if any

    returns

    any number of annotations processed for every input annotation. Not necessary one to one relationship

    Definition Classes
    WordEmbeddingsModelHasSimpleAnnotate
  12. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  13. def beforeAnnotate(dataset: Dataset[_]): Dataset[_]
    Definition Classes
    WordEmbeddingsModelAnnotatorModel
  14. val caseSensitive: BooleanParam

    Whether to ignore case in index lookups (Default depends on model)

    Whether to ignore case in index lookups (Default depends on model)

    Definition Classes
    HasCaseSensitiveProperties
  15. final def checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  16. final def clear(param: Param[_]): WordEmbeddingsModel.this.type
    Definition Classes
    Params
  17. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  18. def copy(extra: ParamMap): WordEmbeddingsModel

    requirement for annotators copies

    requirement for annotators copies

    Definition Classes
    RawAnnotator → Model → Transformer → PipelineStage → Params
  19. def copyValues[T <: Params](to: T, extra: ParamMap): T
    Attributes
    protected
    Definition Classes
    Params
  20. def createDatabaseConnection(database: Name): RocksDBConnection
    Definition Classes
    HasStorageRef
  21. def createReader(database: Name, connection: RocksDBConnection): WordEmbeddingsReader
    Attributes
    protected
    Definition Classes
    WordEmbeddingsModelHasStorageReader
  22. val databases: Array[Name]
    Definition Classes
    WordEmbeddingsModelHasStorageModel
  23. final def defaultCopy[T <: Params](extra: ParamMap): T
    Attributes
    protected
    Definition Classes
    Params
  24. def deserializeStorage(path: String, spark: SparkSession): Unit
    Definition Classes
    HasStorageModel
  25. def dfAnnotate: UserDefinedFunction

    Wraps annotate to happen inside SparkSQL user defined functions in order to act with org.apache.spark.sql.Column

    Wraps annotate to happen inside SparkSQL user defined functions in order to act with org.apache.spark.sql.Column

    returns

    udf function to be applied to inputCols using this annotator's annotate function as part of ML transformation

    Definition Classes
    HasSimpleAnnotate
  26. val dimension: ProtectedParam[Int]

    Number of embedding dimensions (Default depends on model)

    Number of embedding dimensions (Default depends on model)

    Definition Classes
    HasEmbeddingsProperties
  27. val enableInMemoryStorage: BooleanParam
    Definition Classes
    HasStorageOptions
  28. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  29. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  30. def explainParam(param: Param[_]): String
    Definition Classes
    Params
  31. def explainParams(): String
    Definition Classes
    Params
  32. def extraValidate(structType: StructType): Boolean
    Attributes
    protected
    Definition Classes
    RawAnnotator
  33. def extraValidateMsg: String

    Override for additional custom schema checks

    Override for additional custom schema checks

    Attributes
    protected
    Definition Classes
    RawAnnotator
  34. final def extractParamMap(): ParamMap
    Definition Classes
    Params
  35. final def extractParamMap(extra: ParamMap): ParamMap
    Definition Classes
    Params
  36. val features: ArrayBuffer[Feature[_, _, _]]
    Definition Classes
    HasFeatures
  37. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  38. def fromBytes(source: Array[Byte]): Array[Float]
    Definition Classes
    ReadsFromBytes
  39. def get[T](feature: StructFeature[T]): Option[T]
    Attributes
    protected
    Definition Classes
    HasFeatures
  40. def get[K, V](feature: MapFeature[K, V]): Option[Map[K, V]]
    Attributes
    protected
    Definition Classes
    HasFeatures
  41. def get[T](feature: SetFeature[T]): Option[Set[T]]
    Attributes
    protected
    Definition Classes
    HasFeatures
  42. def get[T](feature: ArrayFeature[T]): Option[Array[T]]
    Attributes
    protected
    Definition Classes
    HasFeatures
  43. final def get[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  44. def getCaseSensitive: Boolean

    Definition Classes
    HasCaseSensitiveProperties
  45. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  46. final def getDefault[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  47. def getDimension: Int

    Definition Classes
    HasEmbeddingsProperties
  48. def getEnableInMemoryStorage: Boolean
    Definition Classes
    HasStorageOptions
  49. def getIncludeStorage: Boolean
    Definition Classes
    HasStorageOptions
  50. def getInputCols: Array[String]

    returns

    input annotations columns currently used

    Definition Classes
    HasInputAnnotationCols
  51. def getLazyAnnotator: Boolean
    Definition Classes
    CanBeLazy
  52. final def getOrDefault[T](param: Param[T]): T
    Definition Classes
    Params
  53. final def getOutputCol: String

    Gets annotation column name going to generate

    Gets annotation column name going to generate

    Definition Classes
    HasOutputAnnotationCol
  54. def getParam(paramName: String): Param[Any]
    Definition Classes
    Params
  55. def getReader[A](database: Name): StorageReader[A]
    Attributes
    protected
    Definition Classes
    HasStorageReader
  56. def getStorageRef: String
    Definition Classes
    HasStorageRef
  57. final def hasDefault[T](param: Param[T]): Boolean
    Definition Classes
    Params
  58. def hasParam(paramName: String): Boolean
    Definition Classes
    Params
  59. def hasParent: Boolean
    Definition Classes
    Model
  60. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  61. val includeStorage: BooleanParam
    Definition Classes
    HasStorageOptions
  62. def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  63. def initializeLogIfNecessary(isInterpreter: Boolean): Unit
    Attributes
    protected
    Definition Classes
    Logging
  64. val inputAnnotatorTypes: Array[String]

    Input annotator type : DOCUMENT, TOKEN

    Input annotator type : DOCUMENT, TOKEN

    Definition Classes
    WordEmbeddingsModelHasInputAnnotationCols
  65. final val inputCols: StringArrayParam

    columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified

    columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified

    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  66. final def isDefined(param: Param[_]): Boolean
    Definition Classes
    Params
  67. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  68. final def isSet(param: Param[_]): Boolean
    Definition Classes
    Params
  69. def isTraceEnabled(): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  70. val lazyAnnotator: BooleanParam
    Definition Classes
    CanBeLazy
  71. def log: Logger
    Attributes
    protected
    Definition Classes
    Logging
  72. def logDebug(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  73. def logDebug(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  74. def logError(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  75. def logError(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  76. def logInfo(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  77. def logInfo(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  78. def logName: String
    Attributes
    protected
    Definition Classes
    Logging
  79. def logTrace(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  80. def logTrace(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  81. def logWarning(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  82. def logWarning(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  83. def msgHelper(schema: StructType): String
    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  84. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  85. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  86. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  87. def onWrite(path: String, spark: SparkSession): Unit
    Attributes
    protected
    Definition Classes
    HasStorageModelParamsAndFeaturesWritable
  88. val optionalInputAnnotatorTypes: Array[String]
    Definition Classes
    HasInputAnnotationCols
  89. val outputAnnotatorType: AnnotatorType

    Output annotator type : WORD_EMBEDDINGS

    Output annotator type : WORD_EMBEDDINGS

    Definition Classes
    WordEmbeddingsModelHasOutputAnnotatorType
  90. final val outputCol: Param[String]
    Attributes
    protected
    Definition Classes
    HasOutputAnnotationCol
  91. lazy val params: Array[Param[_]]
    Definition Classes
    Params
  92. var parent: Estimator[WordEmbeddingsModel]
    Definition Classes
    Model
  93. val readCacheSize: IntParam

    Cache size for items retrieved from storage.

    Cache size for items retrieved from storage. Increase for performance but higher memory consumption

  94. val readers: Map[Name, StorageReader[_]]
    Attributes
    protected
    Definition Classes
    HasStorageReader
    Annotations
    @transient()
  95. def save(path: String): Unit
    Definition Classes
    MLWritable
    Annotations
    @Since( "1.6.0" ) @throws( ... )
  96. def saveStorage(path: String, spark: SparkSession, withinStorage: Boolean = false): Unit
    Definition Classes
    HasStorageModel
  97. def serializeStorage(path: String, spark: SparkSession): Unit
    Definition Classes
    HasStorageModel
  98. def set[T](param: ProtectedParam[T], value: T): WordEmbeddingsModel.this.type

    Sets the value for a protected Param.

    Sets the value for a protected Param.

    If the parameter was already set, it will not be set again. Default values do not count as a set value and can be overridden.

    T

    Type of the parameter

    param

    Protected parameter to set

    value

    Value for the parameter

    returns

    This object

    Definition Classes
    HasProtectedParams
  99. def set[T](feature: StructFeature[T], value: T): WordEmbeddingsModel.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  100. def set[K, V](feature: MapFeature[K, V], value: Map[K, V]): WordEmbeddingsModel.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  101. def set[T](feature: SetFeature[T], value: Set[T]): WordEmbeddingsModel.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  102. def set[T](feature: ArrayFeature[T], value: Array[T]): WordEmbeddingsModel.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  103. final def set(paramPair: ParamPair[_]): WordEmbeddingsModel.this.type
    Attributes
    protected
    Definition Classes
    Params
  104. final def set(param: String, value: Any): WordEmbeddingsModel.this.type
    Attributes
    protected
    Definition Classes
    Params
  105. final def set[T](param: Param[T], value: T): WordEmbeddingsModel.this.type
    Definition Classes
    Params
  106. def setCaseSensitive(value: Boolean): WordEmbeddingsModel.this.type

    Definition Classes
    HasCaseSensitiveProperties
  107. def setDefault[T](feature: StructFeature[T], value: () ⇒ T): WordEmbeddingsModel.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  108. def setDefault[K, V](feature: MapFeature[K, V], value: () ⇒ Map[K, V]): WordEmbeddingsModel.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  109. def setDefault[T](feature: SetFeature[T], value: () ⇒ Set[T]): WordEmbeddingsModel.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  110. def setDefault[T](feature: ArrayFeature[T], value: () ⇒ Array[T]): WordEmbeddingsModel.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  111. final def setDefault(paramPairs: ParamPair[_]*): WordEmbeddingsModel.this.type
    Attributes
    protected
    Definition Classes
    Params
  112. final def setDefault[T](param: Param[T], value: T): WordEmbeddingsModel.this.type
    Attributes
    protected[org.apache.spark.ml]
    Definition Classes
    Params
  113. def setDimension(value: Int): WordEmbeddingsModel.this.type

    Definition Classes
    HasEmbeddingsProperties
  114. def setEnableInMemoryStorage(value: Boolean): WordEmbeddingsModel.this.type
    Definition Classes
    HasStorageOptions
  115. def setIncludeStorage(value: Boolean): WordEmbeddingsModel.this.type
    Definition Classes
    HasStorageOptions
  116. final def setInputCols(value: String*): WordEmbeddingsModel.this.type
    Definition Classes
    HasInputAnnotationCols
  117. def setInputCols(value: Array[String]): WordEmbeddingsModel.this.type

    Overrides required annotators column if different than default

    Overrides required annotators column if different than default

    Definition Classes
    HasInputAnnotationCols
  118. def setLazyAnnotator(value: Boolean): WordEmbeddingsModel.this.type
    Definition Classes
    CanBeLazy
  119. final def setOutputCol(value: String): WordEmbeddingsModel.this.type

    Overrides annotation column name when transforming

    Overrides annotation column name when transforming

    Definition Classes
    HasOutputAnnotationCol
  120. def setParent(parent: Estimator[WordEmbeddingsModel]): WordEmbeddingsModel
    Definition Classes
    Model
  121. def setReadCacheSize(value: Int): WordEmbeddingsModel.this.type

    Set cache size for items retrieved from storage.

    Set cache size for items retrieved from storage. Increase for performance but higher memory consumption

  122. def setStorageRef(value: String): WordEmbeddingsModel.this.type
    Definition Classes
    HasStorageRef
  123. val storageRef: Param[String]

    Unique identifier for storage (Default: this.uid)

    Unique identifier for storage (Default: this.uid)

    Definition Classes
    HasStorageRef
  124. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  125. def toString(): String
    Definition Classes
    Identifiable → AnyRef → Any
  126. final def transform(dataset: Dataset[_]): DataFrame

    Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content

    Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content

    dataset

    Dataset[Row]

    Definition Classes
    AnnotatorModel → Transformer
  127. def transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" )
  128. def transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" ) @varargs()
  129. final def transformSchema(schema: StructType): StructType

    requirement for pipeline transformation validation.

    requirement for pipeline transformation validation. It is called on fit()

    Definition Classes
    RawAnnotator → PipelineStage
  130. def transformSchema(schema: StructType, logging: Boolean): StructType
    Attributes
    protected
    Definition Classes
    PipelineStage
    Annotations
    @DeveloperApi()
  131. val uid: String
    Definition Classes
    WordEmbeddingsModel → Identifiable
  132. def validate(schema: StructType): Boolean

    takes a Dataset and checks to see if all the required annotation types are present.

    takes a Dataset and checks to see if all the required annotation types are present.

    schema

    to be validated

    returns

    True if all the required types are present, else false

    Attributes
    protected
    Definition Classes
    RawAnnotator
  133. def validateStorageRef(dataset: Dataset[_], inputCols: Array[String], annotatorType: String): Unit
    Definition Classes
    HasStorageRef
  134. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  135. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  136. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  137. def wrapColumnMetadata(col: Column): Column
    Attributes
    protected
    Definition Classes
    RawAnnotator
  138. def wrapEmbeddingsMetadata(col: Column, embeddingsDim: Int, embeddingsRef: Option[String] = None): Column
    Attributes
    protected
    Definition Classes
    HasEmbeddingsProperties
  139. def wrapSentenceEmbeddingsMetadata(col: Column, embeddingsDim: Int, embeddingsRef: Option[String] = None): Column
    Attributes
    protected
    Definition Classes
    HasEmbeddingsProperties
  140. def write: MLWriter
    Definition Classes
    ParamsAndFeaturesWritable → DefaultParamsWritable → MLWritable

Inherited from ReadsFromBytes

Inherited from HasStorageModel

Inherited from HasStorageOptions

Inherited from HasStorageReader

Inherited from HasStorageRef

Inherited from HasEmbeddingsProperties

Inherited from HasProtectedParams

Inherited from CanBeLazy

Inherited from HasOutputAnnotationCol

Inherited from HasInputAnnotationCols

Inherited from HasOutputAnnotatorType

Inherited from ParamsAndFeaturesWritable

Inherited from HasFeatures

Inherited from DefaultParamsWritable

Inherited from MLWritable

Inherited from Model[WordEmbeddingsModel]

Inherited from Transformer

Inherited from PipelineStage

Inherited from Logging

Inherited from Params

Inherited from Serializable

Inherited from Serializable

Inherited from Identifiable

Inherited from AnyRef

Inherited from Any

Parameters

A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.

Annotator types

Required input and expected output annotator types

Members

Parameter setters

Parameter getters