class WordSegmenterApproach extends AnnotatorApproach[WordSegmenterModel] with PerceptronTrainingUtils
Trains a WordSegmenter which tokenizes non-english or non-whitespace separated texts.
Many languages are not whitespace separated and their sentences are a concatenation of many symbols, like Korean, Japanese or Chinese. Without understanding the language, splitting the words into their corresponding tokens is impossible. The WordSegmenter is trained to understand these languages and split them into semantically correct parts.
This annotator is based on the paper Chinese Word Segmentation as Character Tagging [1]. Word segmentation is treated as a tagging problem. Each character is be tagged as on of four different labels: LL (left boundary), RR (right boundary), MM (middle) and LR (word by itself). The label depends on the position of the word in the sentence. LL tagged words will combine with the word on the right. Likewise, RR tagged words combine with words on the left. MM tagged words are treated as the middle of the word and combine with either side. LR tagged words are words by themselves.
Example (from [1], Example 3(a) (raw), 3(b) (tagged), 3(c) (translation)):
- 上海 计划 到 本 世纪 末 实现 人均 国内 生产 总值 五千 美元
- 上/LL 海/RR 计/LL 划/RR 到/LR 本/LR 世/LL 纪/RR 末/LR 实/LL 现/RR 人/LL 均/RR 国/LL 内/RR 生/LL 产/RR 总/LL 值/RR 五/LL 千/RR 美/LL 元/RR
- Shanghai plans to reach the goal of 5,000 dollars in per capita GDP by the end of the century.
For instantiated/pretrained models, see WordSegmenterModel.
To train your own model, a training dataset consisting of
Part-Of-Speech tags is required. The
data has to be loaded into a dataframe, where the column is an
Annotation of type "POS"
. This can be set with
setPosColumn
.
Tip: The helper class POS might be useful to read training data into data frames. nl For extended examples of usage, see the Examples and the WordSegmenterTest.
References:
- [1] Xue, Nianwen. “Chinese Word Segmentation as Character Tagging.” International Journal of Computational Linguistics & Chinese Language Processing, Volume 8, Number 1, February 2003: Special Issue on Word Formation and Chinese Language Processing, 2003, pp. 29-48. ACLWeb, https://aclanthology.org/O03-4002.
Example
In this example, "chinese_train.utf8"
is in the form of
十|LL 四|RR 不|LL 是|RR 四|LL 十|RR
and is loaded with the POS
class to create a dataframe of "POS"
type Annotations.
import com.johnsnowlabs.nlp.base.DocumentAssembler import com.johnsnowlabs.nlp.annotators.ws.WordSegmenterApproach import com.johnsnowlabs.nlp.training.POS import org.apache.spark.ml.Pipeline val documentAssembler = new DocumentAssembler() .setInputCol("text") .setOutputCol("document") val wordSegmenter = new WordSegmenterApproach() .setInputCols("document") .setOutputCol("token") .setPosColumn("tags") .setNIterations(5) val pipeline = new Pipeline().setStages(Array( documentAssembler, wordSegmenter )) val trainingDataSet = POS().readDataset( spark, "src/test/resources/word-segmenter/chinese_train.utf8" ) val pipelineModel = pipeline.fit(trainingDataSet)
- Grouped
- Alphabetic
- By Inheritance
- WordSegmenterApproach
- PerceptronTrainingUtils
- PerceptronUtils
- AnnotatorApproach
- CanBeLazy
- DefaultParamsWritable
- MLWritable
- HasOutputAnnotatorType
- HasOutputAnnotationCol
- HasInputAnnotationCols
- Estimator
- PipelineStage
- Logging
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
Type Members
-
type
AnnotatorType = String
- Definition Classes
- HasOutputAnnotatorType
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
$[T](param: Param[T]): T
- Attributes
- protected
- Definition Classes
- Params
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
_fit(dataset: Dataset[_], recursiveStages: Option[PipelineModel]): WordSegmenterModel
- Attributes
- protected
- Definition Classes
- AnnotatorApproach
-
val
ambiguityThreshold: DoubleParam
How much percentage of total amount of words are covered to be marked as frequent (Default:
0.97
) -
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
beforeTraining(spark: SparkSession): Unit
- Definition Classes
- AnnotatorApproach
-
def
buildTagBook(taggedSentences: Array[TaggedSentence], frequencyThreshold: Int, ambiguityThreshold: Double): Map[String, String]
Finds very frequent tags on a word in training, and marks them as non ambiguous based on tune parameters ToDo: Move such parameters to configuration
Finds very frequent tags on a word in training, and marks them as non ambiguous based on tune parameters ToDo: Move such parameters to configuration
- taggedSentences
Takes entire tagged sentences to find frequent tags
- frequencyThreshold
How many times at least a tag on a word to be marked as frequent
- ambiguityThreshold
How much percentage of total amount of words are covered to be marked as frequent
- Definition Classes
- PerceptronTrainingUtils
-
final
def
checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
final
def
clear(param: Param[_]): WordSegmenterApproach.this.type
- Definition Classes
- Params
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
final
def
copy(extra: ParamMap): Estimator[WordSegmenterModel]
- Definition Classes
- AnnotatorApproach → Estimator → PipelineStage → Params
-
def
copyValues[T <: Params](to: T, extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
final
def
defaultCopy[T <: Params](extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
val
description: String
- Definition Classes
- WordSegmenterApproach → AnnotatorApproach
- val enableRegexTokenizer: BooleanParam
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
explainParam(param: Param[_]): String
- Definition Classes
- Params
-
def
explainParams(): String
- Definition Classes
- Params
-
final
def
extractParamMap(): ParamMap
- Definition Classes
- Params
-
final
def
extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
fit(dataset: Dataset[_]): WordSegmenterModel
- Definition Classes
- AnnotatorApproach → Estimator
-
def
fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[WordSegmenterModel]
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" )
-
def
fit(dataset: Dataset[_], paramMap: ParamMap): WordSegmenterModel
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" )
-
def
fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): WordSegmenterModel
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" ) @varargs()
-
val
frequencyThreshold: IntParam
How many times at least a tag on a word to be marked as frequent (Default:
20
) -
def
generatesTagBook(dataset: Dataset[_]): Array[TaggedSentence]
Generates TagBook, which holds all the word to tags mapping that are not ambiguous
Generates TagBook, which holds all the word to tags mapping that are not ambiguous
- Definition Classes
- PerceptronTrainingUtils
-
final
def
get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
def
getInputCols: Array[String]
- returns
input annotations columns currently used
- Definition Classes
- HasInputAnnotationCols
-
def
getLazyAnnotator: Boolean
- Definition Classes
- CanBeLazy
- def getNIterations: Int
-
final
def
getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
-
final
def
getOutputCol: String
Gets annotation column name going to generate
Gets annotation column name going to generate
- Definition Classes
- HasOutputAnnotationCol
-
def
getParam(paramName: String): Param[Any]
- Definition Classes
- Params
-
final
def
hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
-
def
hasParam(paramName: String): Boolean
- Definition Classes
- Params
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
def
initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
val
inputAnnotatorTypes: Array[String]
Input Annotator Types: DOCUMENT
Input Annotator Types: DOCUMENT
- Definition Classes
- WordSegmenterApproach → HasInputAnnotationCols
-
final
val
inputCols: StringArrayParam
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
final
def
isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
isSet(param: Param[_]): Boolean
- Definition Classes
- Params
-
def
isTraceEnabled(): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
val
lazyAnnotator: BooleanParam
- Definition Classes
- CanBeLazy
-
def
log: Logger
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logName: String
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
msgHelper(schema: StructType): String
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
val
nIterations: IntParam
Number of iterations in training, converges to better accuracy (Default:
5
) -
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
onTrained(model: WordSegmenterModel, spark: SparkSession): Unit
- Definition Classes
- AnnotatorApproach
-
val
optionalInputAnnotatorTypes: Array[String]
- Definition Classes
- HasInputAnnotationCols
-
val
outputAnnotatorType: AnnotatorType
Output Annotator Types: TOKEN
Output Annotator Types: TOKEN
- Definition Classes
- WordSegmenterApproach → HasOutputAnnotatorType
-
final
val
outputCol: Param[String]
- Attributes
- protected
- Definition Classes
- HasOutputAnnotationCol
-
lazy val
params: Array[Param[_]]
- Definition Classes
- Params
-
val
pattern: Param[String]
Regex pattern used to match delimiters (Default:
"\\s+"
) -
val
posCol: Param[String]
Column of Array of POS tags that match tokens
-
def
save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @Since( "1.6.0" ) @throws( ... )
-
final
def
set(paramPair: ParamPair[_]): WordSegmenterApproach.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set(param: String, value: Any): WordSegmenterApproach.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set[T](param: Param[T], value: T): WordSegmenterApproach.this.type
- Definition Classes
- Params
- def setAmbiguityThreshold(value: Double): WordSegmenterApproach.this.type
-
final
def
setDefault(paramPairs: ParamPair[_]*): WordSegmenterApproach.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
setDefault[T](param: Param[T], value: T): WordSegmenterApproach.this.type
- Attributes
- protected[org.apache.spark.ml]
- Definition Classes
- Params
- def setEnableRegexTokenizer(value: Boolean): WordSegmenterApproach.this.type
- def setFrequencyThreshold(value: Int): WordSegmenterApproach.this.type
-
final
def
setInputCols(value: String*): WordSegmenterApproach.this.type
- Definition Classes
- HasInputAnnotationCols
-
def
setInputCols(value: Array[String]): WordSegmenterApproach.this.type
Overrides required annotators column if different than default
Overrides required annotators column if different than default
- Definition Classes
- HasInputAnnotationCols
-
def
setLazyAnnotator(value: Boolean): WordSegmenterApproach.this.type
- Definition Classes
- CanBeLazy
- def setNIterations(value: Int): WordSegmenterApproach.this.type
-
final
def
setOutputCol(value: String): WordSegmenterApproach.this.type
Overrides annotation column name when transforming
Overrides annotation column name when transforming
- Definition Classes
- HasOutputAnnotationCol
- def setPattern(value: String): WordSegmenterApproach.this.type
- def setPosColumn(value: String): WordSegmenterApproach.this.type
- def setToLowercase(value: Boolean): WordSegmenterApproach.this.type
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
val
toLowercase: BooleanParam
Indicates whether to convert all characters to lowercase before tokenizing (Default:
false
). -
def
toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
-
def
train(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): WordSegmenterModel
- Definition Classes
- WordSegmenterApproach → AnnotatorApproach
-
def
trainPerceptron(nIterations: Int, initialModel: TrainingPerceptronLegacy, taggedSentences: Array[TaggedSentence], taggedWordBook: Map[String, String]): AveragedPerceptron
Iterates for training
Iterates for training
- Definition Classes
- PerceptronTrainingUtils
-
final
def
transformSchema(schema: StructType): StructType
requirement for pipeline transformation validation.
requirement for pipeline transformation validation. It is called on fit()
- Definition Classes
- AnnotatorApproach → PipelineStage
-
def
transformSchema(schema: StructType, logging: Boolean): StructType
- Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
-
val
uid: String
- Definition Classes
- WordSegmenterApproach → Identifiable
-
def
validate(schema: StructType): Boolean
takes a Dataset and checks to see if all the required annotation types are present.
takes a Dataset and checks to see if all the required annotation types are present.
- schema
to be validated
- returns
True if all the required types are present, else false
- Attributes
- protected
- Definition Classes
- AnnotatorApproach
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
def
write: MLWriter
- Definition Classes
- DefaultParamsWritable → MLWritable
Inherited from PerceptronTrainingUtils
Inherited from PerceptronUtils
Inherited from AnnotatorApproach[WordSegmenterModel]
Inherited from CanBeLazy
Inherited from DefaultParamsWritable
Inherited from MLWritable
Inherited from HasOutputAnnotatorType
Inherited from HasOutputAnnotationCol
Inherited from HasInputAnnotationCols
Inherited from Estimator[WordSegmenterModel]
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.
Annotator types
Required input and expected output annotator types