Packages

class Cleaner extends MarianTransformer

Ordering
  1. Grouped
  2. Alphabetic
  3. By Inheritance
Inherited
  1. Cleaner
  2. MarianTransformer
  3. HasProtectedParams
  4. HasEngine
  5. WriteSentencePieceModel
  6. WriteOnnxModel
  7. WriteTensorflowModel
  8. HasBatchedAnnotate
  9. AnnotatorModel
  10. CanBeLazy
  11. RawAnnotator
  12. HasOutputAnnotationCol
  13. HasInputAnnotationCols
  14. HasOutputAnnotatorType
  15. ParamsAndFeaturesWritable
  16. HasFeatures
  17. DefaultParamsWritable
  18. MLWritable
  19. Model
  20. Transformer
  21. PipelineStage
  22. Logging
  23. Params
  24. Serializable
  25. Serializable
  26. Identifiable
  27. AnyRef
  28. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new Cleaner()

    Annotator reference id.

    Annotator reference id. Used to identify elements in metadata or to refer to this annotator type

  2. new Cleaner(uid: String)

Type Members

  1. implicit class ProtectedParam[T] extends Param[T]
    Definition Classes
    HasProtectedParams
  2. type AnnotationContent = Seq[Row]

    internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI

    internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI

    Attributes
    protected
    Definition Classes
    AnnotatorModel
  3. type AnnotatorType = String
    Definition Classes
    HasOutputAnnotatorType

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def $[T](param: Param[T]): T
    Attributes
    protected
    Definition Classes
    Params
  4. def $$[T](feature: StructFeature[T]): T
    Attributes
    protected
    Definition Classes
    HasFeatures
  5. def $$[K, V](feature: MapFeature[K, V]): Map[K, V]
    Attributes
    protected
    Definition Classes
    HasFeatures
  6. def $$[T](feature: SetFeature[T]): Set[T]
    Attributes
    protected
    Definition Classes
    HasFeatures
  7. def $$[T](feature: ArrayFeature[T]): Array[T]
    Attributes
    protected
    Definition Classes
    HasFeatures
  8. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  9. def _transform(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): DataFrame
    Attributes
    protected
    Definition Classes
    AnnotatorModel
  10. def afterAnnotate(dataset: DataFrame): DataFrame
    Attributes
    protected
    Definition Classes
    AnnotatorModel
  11. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  12. def batchAnnotate(batchedAnnotations: Seq[Array[Annotation]]): Seq[Seq[Annotation]]

    takes a document and annotations and produces new annotations of this annotator's annotation type

    takes a document and annotations and produces new annotations of this annotator's annotation type

    batchedAnnotations

    Annotations that correspond to inputAnnotationCols generated by previous annotators if any

    returns

    any number of annotations processed for every input annotation. Not necessary one to one relationship

    Definition Classes
    CleanerMarianTransformerHasBatchedAnnotate
  13. def batchProcess(rows: Iterator[_]): Iterator[Row]
    Definition Classes
    HasBatchedAnnotate
  14. val batchSize: IntParam

    Size of every batch (Default depends on model).

    Size of every batch (Default depends on model).

    Definition Classes
    HasBatchedAnnotate
  15. def beforeAnnotate(dataset: Dataset[_]): Dataset[_]
    Attributes
    protected
    Definition Classes
    AnnotatorModel
  16. def buildAnnotation(transformation: (String) ⇒ String)(annotation: Annotation): Annotation
  17. val bullets: Param[Boolean]
  18. final def checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  19. val cleanPostfixPattern: Param[String]
  20. val cleanPrefixPattern: Param[String]
  21. val cleanerMode: Param[String]

    cleanerMode can take the following values:

    cleanerMode can take the following values:

    • bytes_string_to_string: Converts a string representation of a byte string (e.g., containing escape sequences) to an Annotation structure using the specified encoding.
  22. final def clear(param: Param[_]): Cleaner.this.type
    Definition Classes
    Params
  23. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  24. val configProtoBytes: IntArrayParam

    ConfigProto from tensorflow, serialized into byte array.

    ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()

    Definition Classes
    MarianTransformer
  25. def copy(extra: ParamMap): MarianTransformer

    requirement for annotators copies

    requirement for annotators copies

    Definition Classes
    RawAnnotator → Model → Transformer → PipelineStage → Params
  26. def copyValues[T <: Params](to: T, extra: ParamMap): T
    Attributes
    protected
    Definition Classes
    Params
  27. val dashes: Param[Boolean]
  28. final def defaultCopy[T <: Params](extra: ParamMap): T
    Attributes
    protected
    Definition Classes
    Params
  29. val doSample: BooleanParam

    Whether or not to use sampling, use greedy decoding otherwise (Default: false)

    Whether or not to use sampling, use greedy decoding otherwise (Default: false)

    Definition Classes
    MarianTransformer
  30. val encoding: Param[String]
  31. val engine: Param[String]

    This param is set internally once via loadSavedModel.

    This param is set internally once via loadSavedModel. That's why there is no setter

    Definition Classes
    HasEngine
  32. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  33. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  34. def explainParam(param: Param[_]): String
    Definition Classes
    Params
  35. def explainParams(): String
    Definition Classes
    Params
  36. def extraValidate(structType: StructType): Boolean
    Attributes
    protected
    Definition Classes
    RawAnnotator
  37. def extraValidateMsg: String

    Override for additional custom schema checks

    Override for additional custom schema checks

    Attributes
    protected
    Definition Classes
    RawAnnotator
  38. val extraWhitespace: Param[Boolean]
  39. final def extractParamMap(): ParamMap
    Definition Classes
    Params
  40. final def extractParamMap(extra: ParamMap): ParamMap
    Definition Classes
    Params
  41. val features: ArrayBuffer[Feature[_, _, _]]
    Definition Classes
    HasFeatures
  42. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  43. def get[T](feature: StructFeature[T]): Option[T]
    Attributes
    protected
    Definition Classes
    HasFeatures
  44. def get[K, V](feature: MapFeature[K, V]): Option[Map[K, V]]
    Attributes
    protected
    Definition Classes
    HasFeatures
  45. def get[T](feature: SetFeature[T]): Option[Set[T]]
    Attributes
    protected
    Definition Classes
    HasFeatures
  46. def get[T](feature: ArrayFeature[T]): Option[Array[T]]
    Attributes
    protected
    Definition Classes
    HasFeatures
  47. final def get[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  48. def getBatchSize: Int

    Size of every batch.

    Size of every batch.

    Definition Classes
    HasBatchedAnnotate
  49. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  50. def getConfigProtoBytes: Option[Array[Byte]]

    Definition Classes
    MarianTransformer
  51. final def getDefault[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  52. def getDoSample: Boolean

    Definition Classes
    MarianTransformer
  53. def getEngine: String

    Definition Classes
    HasEngine
  54. def getIgnoreTokenIds: Array[Int]

    Definition Classes
    MarianTransformer
  55. def getInputCols: Array[String]

    returns

    input annotations columns currently used

    Definition Classes
    HasInputAnnotationCols
  56. def getLangId: String

    Definition Classes
    MarianTransformer
  57. def getLazyAnnotator: Boolean
    Definition Classes
    CanBeLazy
  58. def getMaxInputLength: Int

    Definition Classes
    MarianTransformer
  59. def getMaxOutputLength: Int

    Definition Classes
    MarianTransformer
  60. def getModelIfNotSet: MarianEncoderDecoder

    Definition Classes
    MarianTransformer
  61. def getNoRepeatNgramSize: Int

    Definition Classes
    MarianTransformer
  62. final def getOrDefault[T](param: Param[T]): T
    Definition Classes
    Params
  63. final def getOutputCol: String

    Gets annotation column name going to generate

    Gets annotation column name going to generate

    Definition Classes
    HasOutputAnnotationCol
  64. def getParam(paramName: String): Param[Any]
    Definition Classes
    Params
  65. def getRandomSeed: Option[Long]

    Definition Classes
    MarianTransformer
  66. def getRepetitionPenalty: Double

    Definition Classes
    MarianTransformer
  67. def getSignatures: Option[Map[String, String]]

    Definition Classes
    MarianTransformer
  68. def getTemperature: Double

    Definition Classes
    MarianTransformer
  69. def getTopK: Int

    Definition Classes
    MarianTransformer
  70. def getTopP: Double

    Definition Classes
    MarianTransformer
  71. def getVocabulary: Array[String]

    do not remove or replace with $(vocabulary) due to a bug in some models

    do not remove or replace with $(vocabulary) due to a bug in some models

    Definition Classes
    MarianTransformer
  72. final def hasDefault[T](param: Param[T]): Boolean
    Definition Classes
    Params
  73. def hasParam(paramName: String): Boolean
    Definition Classes
    Params
  74. def hasParent: Boolean
    Definition Classes
    Model
  75. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  76. val ignoreCase: Param[Boolean]
  77. var ignoreTokenIds: IntArrayParam

    A list of token ids which are ignored in the decoder's output

    A list of token ids which are ignored in the decoder's output

    Definition Classes
    MarianTransformer
  78. def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  79. def initializeLogIfNecessary(isInterpreter: Boolean): Unit
    Attributes
    protected
    Definition Classes
    Logging
  80. val inputAnnotatorTypes: Array[String]

    Input Annotator Type: DOCUMENT

    Input Annotator Type: DOCUMENT

    Definition Classes
    MarianTransformerHasInputAnnotationCols
  81. final val inputCols: StringArrayParam

    columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified

    columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified

    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  82. final def isDefined(param: Param[_]): Boolean
    Definition Classes
    Params
  83. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  84. final def isSet(param: Param[_]): Boolean
    Definition Classes
    Params
  85. def isTraceEnabled(): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  86. var langId: Param[String]

    A string representing the target language in the form of >>id<< (id = valid target language ID) (Default: "")

    A string representing the target language in the form of >>id<< (id = valid target language ID) (Default: "")

    langId is only needed if the model generates multi-lingual target language texts. For instance, for a 'en-fr' model this param is not required to be set.

    Definition Classes
    MarianTransformer
  87. val lazyAnnotator: BooleanParam
    Definition Classes
    CanBeLazy
  88. def log: Logger
    Attributes
    protected
    Definition Classes
    Logging
  89. def logDebug(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  90. def logDebug(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  91. def logError(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  92. def logError(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  93. def logInfo(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  94. def logInfo(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  95. def logName: String
    Attributes
    protected
    Definition Classes
    Logging
  96. def logTrace(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  97. def logTrace(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  98. def logWarning(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  99. def logWarning(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  100. val lowercase: Param[Boolean]
  101. val maxInputLength: IntParam

    Controls the maximum length for encoder inputs (source language texts) (Default: 40)

    Controls the maximum length for encoder inputs (source language texts) (Default: 40)

    Definition Classes
    MarianTransformer
  102. val maxOutputLength: IntParam

    Controls the maximum length for decoder outputs (target language texts) (Default: 40)

    Controls the maximum length for decoder outputs (target language texts) (Default: 40)

    Definition Classes
    MarianTransformer
  103. def msgHelper(schema: StructType): String
    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  104. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  105. val noRepeatNgramSize: IntParam

    If set to int > 0, all ngrams of that size can only occur once (Default: 0)

    If set to int > 0, all ngrams of that size can only occur once (Default: 0)

    Definition Classes
    MarianTransformer
  106. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  107. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  108. def onWrite(path: String, spark: SparkSession): Unit
  109. val optionalInputAnnotatorTypes: Array[String]
    Definition Classes
    HasInputAnnotationCols
  110. val outputAnnotatorType: AnnotatorType

    Annotator reference id.

    Annotator reference id. Used to identify elements in metadata or to refer to this annotator type

    Definition Classes
    CleanerMarianTransformerHasOutputAnnotatorType
  111. final val outputCol: Param[String]
    Attributes
    protected
    Definition Classes
    HasOutputAnnotationCol
  112. lazy val params: Array[Param[_]]
    Definition Classes
    Params
  113. var parent: Estimator[MarianTransformer]
    Definition Classes
    Model
  114. var randomSeed: Option[Long]

    Optional Random seed for the model.

    Optional Random seed for the model. Needs to be of type Long.

    Definition Classes
    MarianTransformer
  115. val repetitionPenalty: DoubleParam

    The parameter for repetition penalty (Default: 1.0).

    The parameter for repetition penalty (Default: 1.0). 1.0 means no penalty. See this paper for more details.

    Definition Classes
    MarianTransformer
  116. def save(path: String): Unit
    Definition Classes
    MLWritable
    Annotations
    @Since( "1.6.0" ) @throws( ... )
  117. def set[T](param: ProtectedParam[T], value: T): Cleaner.this.type

    Sets the value for a protected Param.

    Sets the value for a protected Param.

    If the parameter was already set, it will not be set again. Default values do not count as a set value and can be overridden.

    T

    Type of the parameter

    param

    Protected parameter to set

    value

    Value for the parameter

    returns

    This object

    Definition Classes
    HasProtectedParams
  118. def set[T](feature: StructFeature[T], value: T): Cleaner.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  119. def set[K, V](feature: MapFeature[K, V], value: Map[K, V]): Cleaner.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  120. def set[T](feature: SetFeature[T], value: Set[T]): Cleaner.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  121. def set[T](feature: ArrayFeature[T], value: Array[T]): Cleaner.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  122. final def set(paramPair: ParamPair[_]): Cleaner.this.type
    Attributes
    protected
    Definition Classes
    Params
  123. final def set(param: String, value: Any): Cleaner.this.type
    Attributes
    protected
    Definition Classes
    Params
  124. final def set[T](param: Param[T], value: T): Cleaner.this.type
    Definition Classes
    Params
  125. def setBatchSize(size: Int): Cleaner.this.type

    Size of every batch.

    Size of every batch.

    Definition Classes
    HasBatchedAnnotate
  126. def setBullets(value: Boolean): Cleaner.this.type
  127. def setCleanPostfixPattern(value: String): Cleaner.this.type
  128. def setCleanPrefixPattern(value: String): Cleaner.this.type
  129. def setCleanerMode(value: String): Cleaner.this.type
  130. def setConfigProtoBytes(bytes: Array[Int]): Cleaner.this.type

    Definition Classes
    MarianTransformer
  131. def setDashes(value: Boolean): Cleaner.this.type
  132. def setDefault[T](feature: StructFeature[T], value: () ⇒ T): Cleaner.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  133. def setDefault[K, V](feature: MapFeature[K, V], value: () ⇒ Map[K, V]): Cleaner.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  134. def setDefault[T](feature: SetFeature[T], value: () ⇒ Set[T]): Cleaner.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  135. def setDefault[T](feature: ArrayFeature[T], value: () ⇒ Array[T]): Cleaner.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  136. final def setDefault(paramPairs: ParamPair[_]*): Cleaner.this.type
    Attributes
    protected
    Definition Classes
    Params
  137. final def setDefault[T](param: Param[T], value: T): Cleaner.this.type
    Attributes
    protected[org.apache.spark.ml]
    Definition Classes
    Params
  138. def setDoSample(value: Boolean): Cleaner.this.type

    Definition Classes
    MarianTransformer
  139. def setEncoding(value: String): Cleaner.this.type
  140. def setExtraWhitespace(value: Boolean): Cleaner.this.type
  141. def setIgnoreCase(value: Boolean): Cleaner.this.type
  142. def setIgnoreTokenIds(tokenIds: Array[Int]): Cleaner.this.type

    Definition Classes
    MarianTransformer
  143. final def setInputCols(value: String*): Cleaner.this.type
    Definition Classes
    HasInputAnnotationCols
  144. def setInputCols(value: Array[String]): Cleaner.this.type

    Overrides required annotators column if different than default

    Overrides required annotators column if different than default

    Definition Classes
    HasInputAnnotationCols
  145. def setLangId(lang: String): Cleaner.this.type

    Definition Classes
    MarianTransformer
  146. def setLazyAnnotator(value: Boolean): Cleaner.this.type
    Definition Classes
    CanBeLazy
  147. def setLowercase(value: Boolean): Cleaner.this.type
  148. def setMaxInputLength(value: Int): Cleaner.this.type

    Definition Classes
    MarianTransformer
  149. def setMaxOutputLength(value: Int): Cleaner.this.type

    Definition Classes
    MarianTransformer
  150. def setModelIfNotSet(spark: SparkSession, encoder: OnnxWrapper, decoder: OnnxWrapper, sppSrc: SentencePieceWrapper, sppTrg: SentencePieceWrapper): Cleaner.this.type
    Definition Classes
    MarianTransformer
  151. def setModelIfNotSet(spark: SparkSession, tensorflow: TensorflowWrapper, sppSrc: SentencePieceWrapper, sppTrg: SentencePieceWrapper): Cleaner.this.type

    Definition Classes
    MarianTransformer
  152. def setNoRepeatNgramSize(value: Int): Cleaner.this.type

    Definition Classes
    MarianTransformer
  153. final def setOutputCol(value: String): Cleaner.this.type

    Overrides annotation column name when transforming

    Overrides annotation column name when transforming

    Definition Classes
    HasOutputAnnotationCol
  154. def setParent(parent: Estimator[MarianTransformer]): MarianTransformer
    Definition Classes
    Model
  155. def setRandomSeed(value: Long): Cleaner.this.type

    Definition Classes
    MarianTransformer
  156. def setRepetitionPenalty(value: Double): Cleaner.this.type

    Definition Classes
    MarianTransformer
  157. def setSignatures(value: Map[String, String]): Cleaner.this.type

    Definition Classes
    MarianTransformer
  158. def setStrip(value: Boolean): Cleaner.this.type
  159. def setTemperature(value: Double): Cleaner.this.type

    Definition Classes
    MarianTransformer
  160. def setTopK(value: Int): Cleaner.this.type

    Definition Classes
    MarianTransformer
  161. def setTopP(value: Double): Cleaner.this.type

    Definition Classes
    MarianTransformer
  162. def setTrailingPunctuation(value: Boolean): Cleaner.this.type
  163. def setVocabulary(value: Array[String]): Cleaner.this.type

    Definition Classes
    MarianTransformer
  164. val signatures: MapFeature[String, String]

    It contains TF model signatures for the laded saved model

    It contains TF model signatures for the laded saved model

    Definition Classes
    MarianTransformer
  165. val strip: Param[Boolean]
  166. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  167. val temperature: DoubleParam

    The value used to module the next token probabilities (Default: 1.0)

    The value used to module the next token probabilities (Default: 1.0)

    Definition Classes
    MarianTransformer
  168. def toString(): String
    Definition Classes
    Identifiable → AnyRef → Any
  169. val topK: IntParam

    The number of highest probability vocabulary tokens to keep for top-k-filtering (Default: 50)

    The number of highest probability vocabulary tokens to keep for top-k-filtering (Default: 50)

    Definition Classes
    MarianTransformer
  170. val topP: DoubleParam

    If set to float < 1.0, only the most probable tokens with probabilities that add up to topP or higher are kept for generation (Default: 1.0)

    If set to float < 1.0, only the most probable tokens with probabilities that add up to topP or higher are kept for generation (Default: 1.0)

    Definition Classes
    MarianTransformer
  171. val trailingPunctuation: Param[Boolean]
  172. final def transform(dataset: Dataset[_]): DataFrame

    Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content

    Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content

    dataset

    Dataset[Row]

    Definition Classes
    AnnotatorModel → Transformer
  173. def transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" )
  174. def transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" ) @varargs()
  175. final def transformSchema(schema: StructType): StructType

    requirement for pipeline transformation validation.

    requirement for pipeline transformation validation. It is called on fit()

    Definition Classes
    RawAnnotator → PipelineStage
  176. def transformSchema(schema: StructType, logging: Boolean): StructType
    Attributes
    protected
    Definition Classes
    PipelineStage
    Annotations
    @DeveloperApi()
  177. val uid: String
    Definition Classes
    CleanerMarianTransformer → Identifiable
  178. def validate(schema: StructType): Boolean

    takes a Dataset and checks to see if all the required annotation types are present.

    takes a Dataset and checks to see if all the required annotation types are present.

    schema

    to be validated

    returns

    True if all the required types are present, else false

    Attributes
    protected
    Definition Classes
    RawAnnotator
  179. val vocabulary: StringArrayParam

    Vocabulary used to encode and decode piece tokens generated by SentencePiece.

    Vocabulary used to encode and decode piece tokens generated by SentencePiece. This will be set once the model is created and cannot be changed afterwards

    Definition Classes
    MarianTransformer
  180. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  181. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  182. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  183. def wrapColumnMetadata(col: Column): Column
    Attributes
    protected
    Definition Classes
    RawAnnotator
  184. def write: MLWriter
    Definition Classes
    ParamsAndFeaturesWritable → DefaultParamsWritable → MLWritable
  185. def writeOnnxModel(path: String, spark: SparkSession, onnxWrapper: OnnxWrapper, suffix: String, fileName: String): Unit
    Definition Classes
    WriteOnnxModel
  186. def writeOnnxModels(path: String, spark: SparkSession, onnxWrappersWithNames: Seq[(OnnxWrapper, String)], suffix: String): Unit
    Definition Classes
    WriteOnnxModel
  187. def writeSentencePieceModel(path: String, spark: SparkSession, spp: SentencePieceWrapper, suffix: String, filename: String): Unit
    Definition Classes
    WriteSentencePieceModel
  188. def writeTensorflowHub(path: String, tfPath: String, spark: SparkSession, suffix: String = "_use"): Unit
    Definition Classes
    WriteTensorflowModel
  189. def writeTensorflowModel(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]] = None): Unit
    Definition Classes
    WriteTensorflowModel
  190. def writeTensorflowModelV2(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]] = None, savedSignatures: Option[Map[String, String]] = None): Unit
    Definition Classes
    WriteTensorflowModel

Inherited from MarianTransformer

Inherited from HasProtectedParams

Inherited from HasEngine

Inherited from WriteSentencePieceModel

Inherited from WriteOnnxModel

Inherited from WriteTensorflowModel

Inherited from CanBeLazy

Inherited from HasOutputAnnotationCol

Inherited from HasInputAnnotationCols

Inherited from HasOutputAnnotatorType

Inherited from ParamsAndFeaturesWritable

Inherited from HasFeatures

Inherited from DefaultParamsWritable

Inherited from MLWritable

Inherited from Model[MarianTransformer]

Inherited from Transformer

Inherited from PipelineStage

Inherited from Logging

Inherited from Params

Inherited from Serializable

Inherited from Serializable

Inherited from Identifiable

Inherited from AnyRef

Inherited from Any

setParam *

Parameters

A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.

Annotator types

Required input and expected output annotator types

Members

Parameter setters

Parameter getters