class MarianTransformer extends AnnotatorModel[MarianTransformer] with HasBatchedAnnotate[MarianTransformer] with WriteTensorflowModel with WriteOnnxModel with WriteSentencePieceModel with HasEngine with HasProtectedParams
MarianTransformer: Fast Neural Machine Translation
Marian is an efficient, free Neural Machine Translation framework written in pure C++ with minimal dependencies. It is mainly being developed by the Microsoft Translator team. Many academic (most notably the University of Edinburgh and in the past the Adam Mickiewicz University in Poznań) and commercial contributors help with its development. MarianTransformer uses the models trained by MarianNMT.
It is currently the engine behind the Microsoft Translator Neural Machine Translation services and being deployed by many companies, organizations and research projects.
Note that this model only supports inputs up to 512 tokens. If you are working with longer inputs, consider splitting them first. For example, you can use the SentenceDetectorDL annotator to split longer texts into sentences first.
Pretrained models can be loaded with pretrained
of the companion object:
val marian = MarianTransformer.pretrained() .setInputCols("sentence") .setOutputCol("translation")
The default model is "opus_mt_en_fr"
, default language is "xx"
(meaning multi-lingual), if
no values are provided. For available pretrained models please see the
Models Hub.
For extended examples of usage, see the Examples and the MarianTransformerTestSpec.
Sources :
Marian: Fast Neural Machine Translation in C++
Paper Abstract:
We present Marian, an efficient and self-contained Neural Machine Translation framework with an integrated automatic differentiation engine based on dynamic computation graphs. Marian is written entirely in C++. We describe the design of the encoder-decoder framework and demonstrate that a research-friendly toolkit can achieve high training and translation speed.
Note:
This is a very computationally expensive module especially on larger sequence. The use of an accelerator such as GPU is recommended.
Example
import spark.implicits._ import com.johnsnowlabs.nlp.base.DocumentAssembler import com.johnsnowlabs.nlp.annotator.SentenceDetectorDLModel import com.johnsnowlabs.nlp.annotators.seq2seq.MarianTransformer import org.apache.spark.ml.Pipeline val documentAssembler = new DocumentAssembler() .setInputCol("text") .setOutputCol("document") val sentence = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx") .setInputCols("document") .setOutputCol("sentence") val marian = MarianTransformer.pretrained() .setInputCols("sentence") .setOutputCol("translation") .setMaxInputLength(30) val pipeline = new Pipeline() .setStages(Array( documentAssembler, sentence, marian )) val data = Seq("What is the capital of France? We should know this in french.").toDF("text") val result = pipeline.fit(data).transform(data) result.selectExpr("explode(translation.result) as result").show(false) +-------------------------------------+ |result | +-------------------------------------+ |Quelle est la capitale de la France ?| |On devrait le savoir en français. | +-------------------------------------+
- Grouped
- Alphabetic
- By Inheritance
- MarianTransformer
- HasProtectedParams
- HasEngine
- WriteSentencePieceModel
- WriteOnnxModel
- WriteTensorflowModel
- HasBatchedAnnotate
- AnnotatorModel
- CanBeLazy
- RawAnnotator
- HasOutputAnnotationCol
- HasInputAnnotationCols
- HasOutputAnnotatorType
- ParamsAndFeaturesWritable
- HasFeatures
- DefaultParamsWritable
- MLWritable
- Model
- Transformer
- PipelineStage
- Logging
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
Type Members
-
implicit
class
ProtectedParam[T] extends Param[T]
- Definition Classes
- HasProtectedParams
-
type
AnnotationContent = Seq[Row]
internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI
internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI
- Attributes
- protected
- Definition Classes
- AnnotatorModel
-
type
AnnotatorType = String
- Definition Classes
- HasOutputAnnotatorType
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
$[T](param: Param[T]): T
- Attributes
- protected
- Definition Classes
- Params
-
def
$$[T](feature: StructFeature[T]): T
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
$$[K, V](feature: MapFeature[K, V]): Map[K, V]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
$$[T](feature: SetFeature[T]): Set[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
$$[T](feature: ArrayFeature[T]): Array[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
_transform(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): DataFrame
- Attributes
- protected
- Definition Classes
- AnnotatorModel
-
def
afterAnnotate(dataset: DataFrame): DataFrame
- Attributes
- protected
- Definition Classes
- AnnotatorModel
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
batchAnnotate(batchedAnnotations: Seq[Array[Annotation]]): Seq[Seq[Annotation]]
takes a document and annotations and produces new annotations of this annotator's annotation type
takes a document and annotations and produces new annotations of this annotator's annotation type
- batchedAnnotations
Annotations that correspond to inputAnnotationCols generated by previous annotators if any
- returns
any number of annotations processed for every input annotation. Not necessary one to one relationship
- Definition Classes
- MarianTransformer → HasBatchedAnnotate
-
def
batchProcess(rows: Iterator[_]): Iterator[Row]
- Definition Classes
- HasBatchedAnnotate
-
val
batchSize: IntParam
Size of every batch (Default depends on model).
Size of every batch (Default depends on model).
- Definition Classes
- HasBatchedAnnotate
-
def
beforeAnnotate(dataset: Dataset[_]): Dataset[_]
- Attributes
- protected
- Definition Classes
- AnnotatorModel
-
final
def
checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
final
def
clear(param: Param[_]): MarianTransformer.this.type
- Definition Classes
- Params
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
val
configProtoBytes: IntArrayParam
ConfigProto from tensorflow, serialized into byte array.
ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()
-
def
copy(extra: ParamMap): MarianTransformer
requirement for annotators copies
requirement for annotators copies
- Definition Classes
- RawAnnotator → Model → Transformer → PipelineStage → Params
-
def
copyValues[T <: Params](to: T, extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
final
def
defaultCopy[T <: Params](extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
val
doSample: BooleanParam
Whether or not to use sampling, use greedy decoding otherwise (Default:
false
) -
val
engine: Param[String]
This param is set internally once via loadSavedModel.
This param is set internally once via loadSavedModel. That's why there is no setter
- Definition Classes
- HasEngine
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
explainParam(param: Param[_]): String
- Definition Classes
- Params
-
def
explainParams(): String
- Definition Classes
- Params
-
def
extraValidate(structType: StructType): Boolean
- Attributes
- protected
- Definition Classes
- RawAnnotator
-
def
extraValidateMsg: String
Override for additional custom schema checks
Override for additional custom schema checks
- Attributes
- protected
- Definition Classes
- RawAnnotator
-
final
def
extractParamMap(): ParamMap
- Definition Classes
- Params
-
final
def
extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
-
val
features: ArrayBuffer[Feature[_, _, _]]
- Definition Classes
- HasFeatures
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
def
get[T](feature: StructFeature[T]): Option[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
get[K, V](feature: MapFeature[K, V]): Option[Map[K, V]]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
get[T](feature: SetFeature[T]): Option[Set[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
get[T](feature: ArrayFeature[T]): Option[Array[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
def
getBatchSize: Int
Size of every batch.
Size of every batch.
- Definition Classes
- HasBatchedAnnotate
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
- def getConfigProtoBytes: Option[Array[Byte]]
-
final
def
getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
- def getDoSample: Boolean
-
def
getEngine: String
- Definition Classes
- HasEngine
- def getIgnoreTokenIds: Array[Int]
-
def
getInputCols: Array[String]
- returns
input annotations columns currently used
- Definition Classes
- HasInputAnnotationCols
- def getLangId: String
-
def
getLazyAnnotator: Boolean
- Definition Classes
- CanBeLazy
- def getMaxInputLength: Int
- def getMaxOutputLength: Int
- def getModelIfNotSet: MarianEncoderDecoder
- def getNoRepeatNgramSize: Int
-
final
def
getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
-
final
def
getOutputCol: String
Gets annotation column name going to generate
Gets annotation column name going to generate
- Definition Classes
- HasOutputAnnotationCol
-
def
getParam(paramName: String): Param[Any]
- Definition Classes
- Params
- def getRandomSeed: Option[Long]
- def getRepetitionPenalty: Double
- def getSignatures: Option[Map[String, String]]
- def getTemperature: Double
- def getTopK: Int
- def getTopP: Double
-
def
getVocabulary: Array[String]
do not remove or replace with $(vocabulary) due to a bug in some models
-
final
def
hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
-
def
hasParam(paramName: String): Boolean
- Definition Classes
- Params
-
def
hasParent: Boolean
- Definition Classes
- Model
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
var
ignoreTokenIds: IntArrayParam
A list of token ids which are ignored in the decoder's output
-
def
initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
def
initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
val
inputAnnotatorTypes: Array[String]
Input Annotator Type: DOCUMENT
Input Annotator Type: DOCUMENT
- Definition Classes
- MarianTransformer → HasInputAnnotationCols
-
final
val
inputCols: StringArrayParam
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
final
def
isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
isSet(param: Param[_]): Boolean
- Definition Classes
- Params
-
def
isTraceEnabled(): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
var
langId: Param[String]
A string representing the target language in the form of >>id<< (id = valid target language ID) (Default:
""
)A string representing the target language in the form of >>id<< (id = valid target language ID) (Default:
""
)langId is only needed if the model generates multi-lingual target language texts. For instance, for a 'en-fr' model this param is not required to be set.
-
val
lazyAnnotator: BooleanParam
- Definition Classes
- CanBeLazy
-
def
log: Logger
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logName: String
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
val
maxInputLength: IntParam
Controls the maximum length for encoder inputs (source language texts) (Default:
40
) -
val
maxOutputLength: IntParam
Controls the maximum length for decoder outputs (target language texts) (Default:
40
) -
def
msgHelper(schema: StructType): String
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
val
noRepeatNgramSize: IntParam
If set to int >
0
, all ngrams of that size can only occur once (Default:0
) -
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
onWrite(path: String, spark: SparkSession): Unit
- Definition Classes
- MarianTransformer → ParamsAndFeaturesWritable
-
val
optionalInputAnnotatorTypes: Array[String]
- Definition Classes
- HasInputAnnotationCols
-
val
outputAnnotatorType: AnnotatorType
Output Annotator Type: DOCUMENT
Output Annotator Type: DOCUMENT
- Definition Classes
- MarianTransformer → HasOutputAnnotatorType
-
final
val
outputCol: Param[String]
- Attributes
- protected
- Definition Classes
- HasOutputAnnotationCol
-
lazy val
params: Array[Param[_]]
- Definition Classes
- Params
-
var
parent: Estimator[MarianTransformer]
- Definition Classes
- Model
-
var
randomSeed: Option[Long]
Optional Random seed for the model.
Optional Random seed for the model. Needs to be of type
Long
. -
val
repetitionPenalty: DoubleParam
The parameter for repetition penalty (Default:
1.0
).The parameter for repetition penalty (Default:
1.0
).1.0
means no penalty. See this paper for more details. -
def
save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @Since( "1.6.0" ) @throws( ... )
-
def
set[T](param: ProtectedParam[T], value: T): MarianTransformer.this.type
Sets the value for a protected Param.
Sets the value for a protected Param.
If the parameter was already set, it will not be set again. Default values do not count as a set value and can be overridden.
- T
Type of the parameter
- param
Protected parameter to set
- value
Value for the parameter
- returns
This object
- Definition Classes
- HasProtectedParams
-
def
set[T](feature: StructFeature[T], value: T): MarianTransformer.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
set[K, V](feature: MapFeature[K, V], value: Map[K, V]): MarianTransformer.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
set[T](feature: SetFeature[T], value: Set[T]): MarianTransformer.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
set[T](feature: ArrayFeature[T], value: Array[T]): MarianTransformer.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
set(paramPair: ParamPair[_]): MarianTransformer.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set(param: String, value: Any): MarianTransformer.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set[T](param: Param[T], value: T): MarianTransformer.this.type
- Definition Classes
- Params
-
def
setBatchSize(size: Int): MarianTransformer.this.type
Size of every batch.
Size of every batch.
- Definition Classes
- HasBatchedAnnotate
- def setConfigProtoBytes(bytes: Array[Int]): MarianTransformer.this.type
-
def
setDefault[T](feature: StructFeature[T], value: () ⇒ T): MarianTransformer.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
setDefault[K, V](feature: MapFeature[K, V], value: () ⇒ Map[K, V]): MarianTransformer.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
setDefault[T](feature: SetFeature[T], value: () ⇒ Set[T]): MarianTransformer.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
setDefault[T](feature: ArrayFeature[T], value: () ⇒ Array[T]): MarianTransformer.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
setDefault(paramPairs: ParamPair[_]*): MarianTransformer.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
setDefault[T](param: Param[T], value: T): MarianTransformer.this.type
- Attributes
- protected[org.apache.spark.ml]
- Definition Classes
- Params
- def setDoSample(value: Boolean): MarianTransformer.this.type
- def setIgnoreTokenIds(tokenIds: Array[Int]): MarianTransformer.this.type
-
final
def
setInputCols(value: String*): MarianTransformer.this.type
- Definition Classes
- HasInputAnnotationCols
-
def
setInputCols(value: Array[String]): MarianTransformer.this.type
Overrides required annotators column if different than default
Overrides required annotators column if different than default
- Definition Classes
- HasInputAnnotationCols
- def setLangId(lang: String): MarianTransformer.this.type
-
def
setLazyAnnotator(value: Boolean): MarianTransformer.this.type
- Definition Classes
- CanBeLazy
- def setMaxInputLength(value: Int): MarianTransformer.this.type
- def setMaxOutputLength(value: Int): MarianTransformer.this.type
- def setModelIfNotSet(spark: SparkSession, encoder: OnnxWrapper, decoder: OnnxWrapper, sppSrc: SentencePieceWrapper, sppTrg: SentencePieceWrapper): MarianTransformer.this.type
- def setModelIfNotSet(spark: SparkSession, tensorflow: TensorflowWrapper, sppSrc: SentencePieceWrapper, sppTrg: SentencePieceWrapper): MarianTransformer.this.type
- def setNoRepeatNgramSize(value: Int): MarianTransformer.this.type
-
final
def
setOutputCol(value: String): MarianTransformer.this.type
Overrides annotation column name when transforming
Overrides annotation column name when transforming
- Definition Classes
- HasOutputAnnotationCol
-
def
setParent(parent: Estimator[MarianTransformer]): MarianTransformer
- Definition Classes
- Model
- def setRandomSeed(value: Long): MarianTransformer.this.type
- def setRepetitionPenalty(value: Double): MarianTransformer.this.type
- def setSignatures(value: Map[String, String]): MarianTransformer.this.type
- def setTemperature(value: Double): MarianTransformer.this.type
- def setTopK(value: Int): MarianTransformer.this.type
- def setTopP(value: Double): MarianTransformer.this.type
- def setVocabulary(value: Array[String]): MarianTransformer.this.type
-
val
signatures: MapFeature[String, String]
It contains TF model signatures for the laded saved model
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
val
temperature: DoubleParam
The value used to module the next token probabilities (Default:
1.0
) -
def
toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
-
val
topK: IntParam
The number of highest probability vocabulary tokens to keep for top-k-filtering (Default:
50
) -
val
topP: DoubleParam
If set to float <
1.0
, only the most probable tokens with probabilities that add up totopP
or higher are kept for generation (Default:1.0
) -
final
def
transform(dataset: Dataset[_]): DataFrame
Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content
Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content
- dataset
Dataset[Row]
- Definition Classes
- AnnotatorModel → Transformer
-
def
transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
- Definition Classes
- Transformer
- Annotations
- @Since( "2.0.0" )
-
def
transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
- Definition Classes
- Transformer
- Annotations
- @Since( "2.0.0" ) @varargs()
-
final
def
transformSchema(schema: StructType): StructType
requirement for pipeline transformation validation.
requirement for pipeline transformation validation. It is called on fit()
- Definition Classes
- RawAnnotator → PipelineStage
-
def
transformSchema(schema: StructType, logging: Boolean): StructType
- Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
-
val
uid: String
- Definition Classes
- MarianTransformer → Identifiable
-
def
validate(schema: StructType): Boolean
takes a Dataset and checks to see if all the required annotation types are present.
takes a Dataset and checks to see if all the required annotation types are present.
- schema
to be validated
- returns
True if all the required types are present, else false
- Attributes
- protected
- Definition Classes
- RawAnnotator
-
val
vocabulary: StringArrayParam
Vocabulary used to encode and decode piece tokens generated by SentencePiece.
Vocabulary used to encode and decode piece tokens generated by SentencePiece. This will be set once the model is created and cannot be changed afterwards
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
def
wrapColumnMetadata(col: Column): Column
- Attributes
- protected
- Definition Classes
- RawAnnotator
-
def
write: MLWriter
- Definition Classes
- ParamsAndFeaturesWritable → DefaultParamsWritable → MLWritable
-
def
writeOnnxModel(path: String, spark: SparkSession, onnxWrapper: OnnxWrapper, suffix: String, fileName: String): Unit
- Definition Classes
- WriteOnnxModel
-
def
writeOnnxModels(path: String, spark: SparkSession, onnxWrappersWithNames: Seq[(OnnxWrapper, String)], suffix: String): Unit
- Definition Classes
- WriteOnnxModel
-
def
writeSentencePieceModel(path: String, spark: SparkSession, spp: SentencePieceWrapper, suffix: String, filename: String): Unit
- Definition Classes
- WriteSentencePieceModel
-
def
writeTensorflowHub(path: String, tfPath: String, spark: SparkSession, suffix: String = "_use"): Unit
- Definition Classes
- WriteTensorflowModel
-
def
writeTensorflowModel(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]] = None): Unit
- Definition Classes
- WriteTensorflowModel
-
def
writeTensorflowModelV2(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]] = None, savedSignatures: Option[Map[String, String]] = None): Unit
- Definition Classes
- WriteTensorflowModel
Inherited from HasProtectedParams
Inherited from HasEngine
Inherited from WriteSentencePieceModel
Inherited from WriteOnnxModel
Inherited from WriteTensorflowModel
Inherited from HasBatchedAnnotate[MarianTransformer]
Inherited from AnnotatorModel[MarianTransformer]
Inherited from CanBeLazy
Inherited from RawAnnotator[MarianTransformer]
Inherited from HasOutputAnnotationCol
Inherited from HasInputAnnotationCols
Inherited from HasOutputAnnotatorType
Inherited from ParamsAndFeaturesWritable
Inherited from HasFeatures
Inherited from DefaultParamsWritable
Inherited from MLWritable
Inherited from Model[MarianTransformer]
Inherited from Transformer
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
setParam *
Parameters
A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.
Annotator types
Required input and expected output annotator types