trait EvaluationDLParams extends Params
- Grouped
- Alphabetic
- By Inheritance
- EvaluationDLParams
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Abstract Value Members
Concrete Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
$[T](param: Param[T]): T
- Attributes
- protected
- Definition Classes
- Params
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
final
def
clear(param: Param[_]): EvaluationDLParams.this.type
- Definition Classes
- Params
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
def
copyValues[T <: Params](to: T, extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
final
def
defaultCopy[T <: Params](extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
val
enableOutputLogs: BooleanParam
Whether to output to annotators log folder (Default:
false
) -
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
val
evaluationLogExtended: BooleanParam
Whether logs for validation to be extended (Default:
false
): it displays time and evaluation of each label -
def
explainParam(param: Param[_]): String
- Definition Classes
- Params
-
def
explainParams(): String
- Definition Classes
- Params
-
final
def
extractParamMap(): ParamMap
- Definition Classes
- Params
-
final
def
extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
def
getEnableOutputLogs: Boolean
Whether to output to annotators log folder (Default:
false
) -
final
def
getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
-
def
getOutputLogsPath: String
Folder path to save training logs (Default:
""
) -
def
getParam(paramName: String): Param[Any]
- Definition Classes
- Params
-
def
getValidationSplit: Float
Choose the proportion of training dataset to be validated against the model on each Epoch (Default:
0.0f
).Choose the proportion of training dataset to be validated against the model on each Epoch (Default:
0.0f
). The value should be between 0.0 and 1.0 and by default it is 0.0 and off. -
final
def
hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
-
def
hasParam(paramName: String): Boolean
- Definition Classes
- Params
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
isSet(param: Param[_]): Boolean
- Definition Classes
- Params
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
val
outputLogsPath: Param[String]
Folder path to save training logs (Default:
""
) -
lazy val
params: Array[Param[_]]
- Definition Classes
- Params
-
final
def
set(paramPair: ParamPair[_]): EvaluationDLParams.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set(param: String, value: Any): EvaluationDLParams.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set[T](param: Param[T], value: T): EvaluationDLParams.this.type
- Definition Classes
- Params
-
final
def
setDefault(paramPairs: ParamPair[_]*): EvaluationDLParams.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
setDefault[T](param: Param[T], value: T): EvaluationDLParams.this.type
- Attributes
- protected[org.apache.spark.ml]
- Definition Classes
- Params
-
def
setEnableOutputLogs(enableOutputLogs: Boolean): EvaluationDLParams.this.type
Whether to output to annotators log folder (Default:
false
) -
def
setEvaluationLogExtended(evaluationLogExtended: Boolean): EvaluationDLParams.this.type
Whether logs for validation to be extended: it displays time and evaluation of each label.
Whether logs for validation to be extended: it displays time and evaluation of each label. Default is false.
-
def
setOutputLogsPath(path: String): EvaluationDLParams.this.type
Folder path to save training logs (Default:
""
) -
def
setTestDataset(er: ExternalResource): EvaluationDLParams.this.type
ExternalResource to a parquet file of a test dataset.
ExternalResource to a parquet file of a test dataset. If set, it is used to calculate statistics on it during training.
When using an ExternalResource, only parquet files are accepted for this function.
The parquet file must be a dataframe that has the same columns as the model that is being trained. For example, if the model needs as input
DOCUMENT
,TOKEN
,WORD_EMBEDDINGS
(Features) andNAMED_ENTITY
(label) then these columns also need to be present while saving the dataframe. The pre-processing steps for the training dataframe should also be applied to the test dataframe.An example on how to create such a parquet file could be:
// assuming preProcessingPipeline val Array(train, test) = data.randomSplit(Array(0.8, 0.2)) preProcessingPipeline .fit(test) .transform(test) .write .mode("overwrite") .parquet("test_data") annotator.setTestDataset("test_data")
-
def
setTestDataset(path: String, readAs: Format = ReadAs.SPARK, options: Map[String, String] = Map("format" -> "parquet")): EvaluationDLParams.this.type
Path to a parquet file of a test dataset.
Path to a parquet file of a test dataset. If set, it is used to calculate statistics on it during training.
The parquet file must be a dataframe that has the same columns as the model that is being trained. For example, if the model needs as input
DOCUMENT
,TOKEN
,WORD_EMBEDDINGS
(Features) andNAMED_ENTITY
(label) then these columns also need to be present while saving the dataframe. The pre-processing steps for the training dataframe should also be applied to the test dataframe.An example on how to create such a parquet file could be:
// assuming preProcessingPipeline val Array(train, test) = data.randomSplit(Array(0.8, 0.2)) preProcessingPipeline .fit(test) .transform(test) .write .mode("overwrite") .parquet("test_data") annotator.setTestDataset("test_data")
-
def
setValidationSplit(validationSplit: Float): EvaluationDLParams.this.type
Choose the proportion of training dataset to be validated against the model on each Epoch (Default:
0.0f
).Choose the proportion of training dataset to be validated against the model on each Epoch (Default:
0.0f
). The value should be between 0.0 and 1.0 and by default it is 0.0 and off. -
def
setVerbose(verbose: Level): EvaluationDLParams.this.type
Level of verbosity during training (Default:
Verbose.Silent.id
) -
def
setVerbose(verbose: Int): EvaluationDLParams.this.type
Level of verbosity during training (Default:
Verbose.Silent.id
) -
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
val
testDataset: ExternalResourceParam
Path to a parquet file of a test dataset.
Path to a parquet file of a test dataset. If set, it is used to calculate statistics on it during training.
-
def
toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
-
val
validationSplit: FloatParam
Choose the proportion of training dataset to be validated against the model on each Epoch (Default:
0.0f
).Choose the proportion of training dataset to be validated against the model on each Epoch (Default:
0.0f
). The value should be between 0.0 and 1.0 and by default it is 0.0 and off. -
val
verbose: IntParam
Level of verbosity during training (Default:
Verbose.Silent.id
) -
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()