class MultiClassifierDLApproach extends AnnotatorApproach[MultiClassifierDLModel] with ParamsAndFeaturesWritable with ClassifierEncoder
Trains a MultiClassifierDL for Multi-label Text Classification.
MultiClassifierDL uses a Bidirectional GRU with a convolutional model that we have built inside TensorFlow and supports up to 100 classes.
For instantiated/pretrained models, see MultiClassifierDLModel.
The input to MultiClassifierDL
are Sentence Embeddings such as the state-of-the-art
UniversalSentenceEncoder,
BertSentenceEmbeddings, or
SentenceEmbeddings.
In machine learning, multi-label classification and the strongly related problem of multi-output classification are variants of the classification problem where multiple labels may be assigned to each instance. Multi-label classification is a generalization of multiclass classification, which is the single-label problem of categorizing instances into precisely one of more than two classes; in the multi-label problem there is no constraint on how many of the classes the instance can be assigned to. Formally, multi-label classification is the problem of finding a model that maps inputs x to binary vectors y (assigning a value of 0 or 1 for each element (label) in y).
Notes:
- This annotator requires an array of labels in type of String.
- UniversalSentenceEncoder,
BertSentenceEmbeddings, or
SentenceEmbeddings can be used for
the
inputCol
.
Setting a test dataset to monitor model metrics can be done with .setTestDataset
. The method
expects a path to a parquet file containing a dataframe that has the same required columns as
the training dataframe. The pre-processing steps for the training dataframe should also be
applied to the test dataframe. The following example will show how to create the test dataset:
val documentAssembler = new DocumentAssembler() .setInputCol("text") .setOutputCol("document") val embeddings = UniversalSentenceEncoder.pretrained() .setInputCols("document") .setOutputCol("sentence_embeddings") val preProcessingPipeline = new Pipeline().setStages(Array(documentAssembler, embeddings)) val Array(train, test) = data.randomSplit(Array(0.8, 0.2)) preProcessingPipeline .fit(test) .transform(test) .write .mode("overwrite") .parquet("test_data") val multiClassifier = new MultiClassifierDLApproach() .setInputCols("sentence_embeddings") .setOutputCol("category") .setLabelColumn("label") .setTestDataset("test_data")
For extended examples of usage, see the Examples and the MultiClassifierDLTestSpec.
Example
In this example, the training data has the form (Note: labels can be arbitrary)
mr,ref "name[Alimentum], area[city centre], familyFriendly[no], near[Burger King]",Alimentum is an adult establish found in the city centre area near Burger King. "name[Alimentum], area[city centre], familyFriendly[yes]",Alimentum is a family-friendly place in the city centre. ...
It needs some pre-processing first, so the labels are of type Array[String]
. This can be
done like so:
import spark.implicits._ import com.johnsnowlabs.nlp.annotators.classifier.dl.MultiClassifierDLApproach import com.johnsnowlabs.nlp.base.DocumentAssembler import com.johnsnowlabs.nlp.embeddings.UniversalSentenceEncoder import org.apache.spark.ml.Pipeline import org.apache.spark.sql.functions.{col, udf} // Process training data to create text with associated array of labels def splitAndTrim = udf { labels: String => labels.split(", ").map(x=>x.trim) } val smallCorpus = spark.read .option("header", true) .option("inferSchema", true) .option("mode", "DROPMALFORMED") .csv("src/test/resources/classifier/e2e.csv") .withColumn("labels", splitAndTrim(col("mr"))) .withColumn("text", col("ref")) .drop("mr") smallCorpus.printSchema() // root // |-- ref: string (nullable = true) // |-- labels: array (nullable = true) // | |-- element: string (containsNull = true) // Then create pipeline for training val documentAssembler = new DocumentAssembler() .setInputCol("text") .setOutputCol("document") .setCleanupMode("shrink") val embeddings = UniversalSentenceEncoder.pretrained() .setInputCols("document") .setOutputCol("embeddings") val docClassifier = new MultiClassifierDLApproach() .setInputCols("embeddings") .setOutputCol("category") .setLabelColumn("labels") .setBatchSize(128) .setMaxEpochs(10) .setLr(1e-3f) .setThreshold(0.5f) .setValidationSplit(0.1f) val pipeline = new Pipeline() .setStages( Array( documentAssembler, embeddings, docClassifier ) ) val pipelineModel = pipeline.fit(smallCorpus)
- See also
ClassifierDLApproach for single-class classification
SentimentDLApproach for sentiment analysis
- Grouped
- Alphabetic
- By Inheritance
- MultiClassifierDLApproach
- ClassifierEncoder
- EvaluationDLParams
- ParamsAndFeaturesWritable
- HasFeatures
- AnnotatorApproach
- CanBeLazy
- DefaultParamsWritable
- MLWritable
- HasOutputAnnotatorType
- HasOutputAnnotationCol
- HasInputAnnotationCols
- Estimator
- PipelineStage
- Logging
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
Type Members
-
type
AnnotatorType = String
- Definition Classes
- HasOutputAnnotatorType
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
$[T](param: Param[T]): T
- Attributes
- protected
- Definition Classes
- Params
-
def
$$[T](feature: StructFeature[T]): T
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
$$[K, V](feature: MapFeature[K, V]): Map[K, V]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
$$[T](feature: SetFeature[T]): Set[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
$$[T](feature: ArrayFeature[T]): Array[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
_fit(dataset: Dataset[_], recursiveStages: Option[PipelineModel]): MultiClassifierDLModel
- Attributes
- protected
- Definition Classes
- AnnotatorApproach
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
val
batchSize: IntParam
Batch size (Default:
64
)Batch size (Default:
64
)- Definition Classes
- ClassifierEncoder
-
def
beforeTraining(spark: SparkSession): Unit
- Definition Classes
- AnnotatorApproach
-
def
buildDatasetWithLabels(dataset: Dataset[_], inputCols: String): (DataFrame, Array[String])
- Attributes
- protected
- Definition Classes
- MultiClassifierDLApproach → ClassifierEncoder
-
final
def
checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
final
def
clear(param: Param[_]): MultiClassifierDLApproach.this.type
- Definition Classes
- Params
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
val
configProtoBytes: IntArrayParam
ConfigProto from tensorflow, serialized into byte array.
ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()
- Definition Classes
- ClassifierEncoder
-
final
def
copy(extra: ParamMap): Estimator[MultiClassifierDLModel]
- Definition Classes
- AnnotatorApproach → Estimator → PipelineStage → Params
-
def
copyValues[T <: Params](to: T, extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
final
def
defaultCopy[T <: Params](extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
val
description: String
Trains TensorFlow model for multi-class text classification
Trains TensorFlow model for multi-class text classification
- Definition Classes
- MultiClassifierDLApproach → AnnotatorApproach
-
val
enableOutputLogs: BooleanParam
Whether to output to annotators log folder (Default:
false
)Whether to output to annotators log folder (Default:
false
)- Definition Classes
- EvaluationDLParams
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
val
evaluationLogExtended: BooleanParam
Whether logs for validation to be extended (Default:
false
): it displays time and evaluation of each labelWhether logs for validation to be extended (Default:
false
): it displays time and evaluation of each label- Definition Classes
- EvaluationDLParams
-
def
explainParam(param: Param[_]): String
- Definition Classes
- Params
-
def
explainParams(): String
- Definition Classes
- Params
-
def
extractInputs(encoder: ClassifierDatasetEncoder, dataframe: DataFrame): (Array[Array[Float]], Array[String])
- Attributes
- protected
- Definition Classes
- ClassifierEncoder
-
final
def
extractParamMap(): ParamMap
- Definition Classes
- Params
-
final
def
extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
-
val
features: ArrayBuffer[Feature[_, _, _]]
- Definition Classes
- HasFeatures
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
fit(dataset: Dataset[_]): MultiClassifierDLModel
- Definition Classes
- AnnotatorApproach → Estimator
-
def
fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[MultiClassifierDLModel]
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" )
-
def
fit(dataset: Dataset[_], paramMap: ParamMap): MultiClassifierDLModel
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" )
-
def
fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): MultiClassifierDLModel
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" ) @varargs()
-
def
get[T](feature: StructFeature[T]): Option[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
get[K, V](feature: MapFeature[K, V]): Option[Map[K, V]]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
get[T](feature: SetFeature[T]): Option[Set[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
get[T](feature: ArrayFeature[T]): Option[Array[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
def
getBatchSize: Int
Batch size (Default:
64
)Batch size (Default:
64
)- Definition Classes
- ClassifierEncoder
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
getConfigProtoBytes: Option[Array[Byte]]
Tensorflow config Protobytes passed to the TF session
Tensorflow config Protobytes passed to the TF session
- Definition Classes
- ClassifierEncoder
-
final
def
getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
def
getEnableOutputLogs: Boolean
Whether to output to annotators log folder (Default:
false
)Whether to output to annotators log folder (Default:
false
)- Definition Classes
- EvaluationDLParams
-
def
getInputCols: Array[String]
- returns
input annotations columns currently used
- Definition Classes
- HasInputAnnotationCols
-
def
getLabelColumn: String
Column with label per each document
Column with label per each document
- Definition Classes
- ClassifierEncoder
-
def
getLazyAnnotator: Boolean
- Definition Classes
- CanBeLazy
-
def
getLr: Float
Learning Rate (Default:
5e-3f
)Learning Rate (Default:
5e-3f
)- Definition Classes
- ClassifierEncoder
-
def
getMaxEpochs: Int
Maximum number of epochs to train (Default:
10
)Maximum number of epochs to train (Default:
10
)- Definition Classes
- ClassifierEncoder
-
final
def
getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
-
final
def
getOutputCol: String
Gets annotation column name going to generate
Gets annotation column name going to generate
- Definition Classes
- HasOutputAnnotationCol
-
def
getOutputLogsPath: String
Folder path to save training logs (Default:
""
)Folder path to save training logs (Default:
""
)- Definition Classes
- EvaluationDLParams
-
def
getParam(paramName: String): Param[Any]
- Definition Classes
- Params
-
def
getRandomSeed: Int
Random seed
Random seed
- Definition Classes
- ClassifierEncoder
-
def
getShufflePerEpoch: Boolean
Max sequence length to feed into TensorFlow
-
def
getThreshold: Float
The minimum threshold for each label to be accepted (Default:
0.5f
) -
def
getValidationSplit: Float
Choose the proportion of training dataset to be validated against the model on each Epoch (Default:
0.0f
).Choose the proportion of training dataset to be validated against the model on each Epoch (Default:
0.0f
). The value should be between 0.0 and 1.0 and by default it is 0.0 and off.- Definition Classes
- EvaluationDLParams
-
final
def
hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
-
def
hasParam(paramName: String): Boolean
- Definition Classes
- Params
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
def
initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
val
inputAnnotatorTypes: Array[AnnotatorType]
Input annotator type : SENTENCE_EMBEDDINGS
Input annotator type : SENTENCE_EMBEDDINGS
- Definition Classes
- MultiClassifierDLApproach → HasInputAnnotationCols
-
final
val
inputCols: StringArrayParam
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
final
def
isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
isSet(param: Param[_]): Boolean
- Definition Classes
- Params
-
def
isTraceEnabled(): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
val
labelColumn: Param[String]
Column with label per each document
Column with label per each document
- Definition Classes
- ClassifierEncoder
-
val
lazyAnnotator: BooleanParam
- Definition Classes
- CanBeLazy
- def loadSavedModel(): TensorflowWrapper
-
def
log: Logger
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logName: String
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
val
lr: FloatParam
Learning Rate (Default:
5e-3f
)Learning Rate (Default:
5e-3f
)- Definition Classes
- ClassifierEncoder
-
val
maxEpochs: IntParam
Maximum number of epochs to train (Default:
10
)Maximum number of epochs to train (Default:
10
)- Definition Classes
- ClassifierEncoder
-
def
msgHelper(schema: StructType): String
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
onTrained(model: MultiClassifierDLModel, spark: SparkSession): Unit
- Definition Classes
- AnnotatorApproach
-
def
onWrite(path: String, spark: SparkSession): Unit
- Attributes
- protected
- Definition Classes
- ParamsAndFeaturesWritable
-
val
optionalInputAnnotatorTypes: Array[String]
- Definition Classes
- HasInputAnnotationCols
-
val
outputAnnotatorType: String
Output annotator type : CATEGORY
Output annotator type : CATEGORY
- Definition Classes
- MultiClassifierDLApproach → HasOutputAnnotatorType
-
final
val
outputCol: Param[String]
- Attributes
- protected
- Definition Classes
- HasOutputAnnotationCol
-
val
outputLogsPath: Param[String]
Folder path to save training logs (Default:
""
)Folder path to save training logs (Default:
""
)- Definition Classes
- EvaluationDLParams
-
lazy val
params: Array[Param[_]]
- Definition Classes
- Params
-
val
randomSeed: IntParam
Random seed for shuffling the dataset
Random seed for shuffling the dataset
- Definition Classes
- ClassifierEncoder
-
def
save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @Since( "1.6.0" ) @throws( ... )
-
def
set[T](feature: StructFeature[T], value: T): MultiClassifierDLApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
set[K, V](feature: MapFeature[K, V], value: Map[K, V]): MultiClassifierDLApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
set[T](feature: SetFeature[T], value: Set[T]): MultiClassifierDLApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
set[T](feature: ArrayFeature[T], value: Array[T]): MultiClassifierDLApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
set(paramPair: ParamPair[_]): MultiClassifierDLApproach.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set(param: String, value: Any): MultiClassifierDLApproach.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set[T](param: Param[T], value: T): MultiClassifierDLApproach.this.type
- Definition Classes
- Params
-
def
setBatchSize(batch: Int): MultiClassifierDLApproach.this.type
Batch size (Default:
64
)Batch size (Default:
64
)- Definition Classes
- ClassifierEncoder
-
def
setConfigProtoBytes(bytes: Array[Int]): MultiClassifierDLApproach.this.type
Tensorflow config Protobytes passed to the TF session
Tensorflow config Protobytes passed to the TF session
- Definition Classes
- ClassifierEncoder
-
def
setDefault[T](feature: StructFeature[T], value: () ⇒ T): MultiClassifierDLApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
setDefault[K, V](feature: MapFeature[K, V], value: () ⇒ Map[K, V]): MultiClassifierDLApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
setDefault[T](feature: SetFeature[T], value: () ⇒ Set[T]): MultiClassifierDLApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
setDefault[T](feature: ArrayFeature[T], value: () ⇒ Array[T]): MultiClassifierDLApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
setDefault(paramPairs: ParamPair[_]*): MultiClassifierDLApproach.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
setDefault[T](param: Param[T], value: T): MultiClassifierDLApproach.this.type
- Attributes
- protected[org.apache.spark.ml]
- Definition Classes
- Params
-
def
setEnableOutputLogs(enableOutputLogs: Boolean): MultiClassifierDLApproach.this.type
Whether to output to annotators log folder (Default:
false
)Whether to output to annotators log folder (Default:
false
)- Definition Classes
- EvaluationDLParams
-
def
setEvaluationLogExtended(evaluationLogExtended: Boolean): MultiClassifierDLApproach.this.type
Whether logs for validation to be extended: it displays time and evaluation of each label.
Whether logs for validation to be extended: it displays time and evaluation of each label. Default is false.
- Definition Classes
- EvaluationDLParams
-
final
def
setInputCols(value: String*): MultiClassifierDLApproach.this.type
- Definition Classes
- HasInputAnnotationCols
-
def
setInputCols(value: Array[String]): MultiClassifierDLApproach.this.type
Overrides required annotators column if different than default
Overrides required annotators column if different than default
- Definition Classes
- HasInputAnnotationCols
-
def
setLabelColumn(column: String): MultiClassifierDLApproach.this.type
Column with label per each document
Column with label per each document
- Definition Classes
- ClassifierEncoder
-
def
setLazyAnnotator(value: Boolean): MultiClassifierDLApproach.this.type
- Definition Classes
- CanBeLazy
-
def
setLr(lr: Float): MultiClassifierDLApproach.this.type
Learning Rate (Default:
5e-3f
)Learning Rate (Default:
5e-3f
)- Definition Classes
- ClassifierEncoder
-
def
setMaxEpochs(epochs: Int): MultiClassifierDLApproach.this.type
Maximum number of epochs to train (Default:
10
)Maximum number of epochs to train (Default:
10
)- Definition Classes
- ClassifierEncoder
-
final
def
setOutputCol(value: String): MultiClassifierDLApproach.this.type
Overrides annotation column name when transforming
Overrides annotation column name when transforming
- Definition Classes
- HasOutputAnnotationCol
-
def
setOutputLogsPath(path: String): MultiClassifierDLApproach.this.type
Folder path to save training logs (Default:
""
)Folder path to save training logs (Default:
""
)- Definition Classes
- EvaluationDLParams
-
def
setRandomSeed(seed: Int): MultiClassifierDLApproach.this.type
Random seed
Random seed
- Definition Classes
- ClassifierEncoder
-
def
setShufflePerEpoch(value: Boolean): MultiClassifierDLApproach.this.type
shufflePerEpoch
-
def
setTestDataset(er: ExternalResource): MultiClassifierDLApproach.this.type
ExternalResource to a parquet file of a test dataset.
ExternalResource to a parquet file of a test dataset. If set, it is used to calculate statistics on it during training.
When using an ExternalResource, only parquet files are accepted for this function.
The parquet file must be a dataframe that has the same columns as the model that is being trained. For example, if the model needs as input
DOCUMENT
,TOKEN
,WORD_EMBEDDINGS
(Features) andNAMED_ENTITY
(label) then these columns also need to be present while saving the dataframe. The pre-processing steps for the training dataframe should also be applied to the test dataframe.An example on how to create such a parquet file could be:
// assuming preProcessingPipeline val Array(train, test) = data.randomSplit(Array(0.8, 0.2)) preProcessingPipeline .fit(test) .transform(test) .write .mode("overwrite") .parquet("test_data") annotator.setTestDataset("test_data")
- Definition Classes
- EvaluationDLParams
-
def
setTestDataset(path: String, readAs: Format = ReadAs.SPARK, options: Map[String, String] = Map("format" -> "parquet")): MultiClassifierDLApproach.this.type
Path to a parquet file of a test dataset.
Path to a parquet file of a test dataset. If set, it is used to calculate statistics on it during training.
The parquet file must be a dataframe that has the same columns as the model that is being trained. For example, if the model needs as input
DOCUMENT
,TOKEN
,WORD_EMBEDDINGS
(Features) andNAMED_ENTITY
(label) then these columns also need to be present while saving the dataframe. The pre-processing steps for the training dataframe should also be applied to the test dataframe.An example on how to create such a parquet file could be:
// assuming preProcessingPipeline val Array(train, test) = data.randomSplit(Array(0.8, 0.2)) preProcessingPipeline .fit(test) .transform(test) .write .mode("overwrite") .parquet("test_data") annotator.setTestDataset("test_data")
- Definition Classes
- EvaluationDLParams
-
def
setThreshold(threshold: Float): MultiClassifierDLApproach.this.type
The minimum threshold for each label to be accepted (Default:
0.5f
) -
def
setValidationSplit(validationSplit: Float): MultiClassifierDLApproach.this.type
Choose the proportion of training dataset to be validated against the model on each Epoch (Default:
0.0f
).Choose the proportion of training dataset to be validated against the model on each Epoch (Default:
0.0f
). The value should be between 0.0 and 1.0 and by default it is 0.0 and off.- Definition Classes
- EvaluationDLParams
-
def
setVerbose(verbose: Level): MultiClassifierDLApproach.this.type
Level of verbosity during training (Default:
Verbose.Silent.id
)Level of verbosity during training (Default:
Verbose.Silent.id
)- Definition Classes
- EvaluationDLParams
-
def
setVerbose(verbose: Int): MultiClassifierDLApproach.this.type
Level of verbosity during training (Default:
Verbose.Silent.id
)Level of verbosity during training (Default:
Verbose.Silent.id
)- Definition Classes
- EvaluationDLParams
-
val
shufflePerEpoch: BooleanParam
Whether to shuffle the training data on each Epoch (Default:
false
) -
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
val
testDataset: ExternalResourceParam
Path to a parquet file of a test dataset.
Path to a parquet file of a test dataset. If set, it is used to calculate statistics on it during training.
- Definition Classes
- EvaluationDLParams
-
val
threshold: FloatParam
The minimum threshold for each label to be accepted (Default:
0.5f
) -
def
toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
-
def
train(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): MultiClassifierDLModel
- Definition Classes
- MultiClassifierDLApproach → AnnotatorApproach
-
final
def
transformSchema(schema: StructType): StructType
requirement for pipeline transformation validation.
requirement for pipeline transformation validation. It is called on fit()
- Definition Classes
- AnnotatorApproach → PipelineStage
-
def
transformSchema(schema: StructType, logging: Boolean): StructType
- Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
-
val
uid: String
- Definition Classes
- MultiClassifierDLApproach → Identifiable
-
def
validate(schema: StructType): Boolean
takes a Dataset and checks to see if all the required annotation types are present.
takes a Dataset and checks to see if all the required annotation types are present.
- schema
to be validated
- returns
True if all the required types are present, else false
- Attributes
- protected
- Definition Classes
- AnnotatorApproach
-
val
validationSplit: FloatParam
Choose the proportion of training dataset to be validated against the model on each Epoch (Default:
0.0f
).Choose the proportion of training dataset to be validated against the model on each Epoch (Default:
0.0f
). The value should be between 0.0 and 1.0 and by default it is 0.0 and off.- Definition Classes
- EvaluationDLParams
-
val
verbose: IntParam
Level of verbosity during training (Default:
Verbose.Silent.id
)Level of verbosity during training (Default:
Verbose.Silent.id
)- Definition Classes
- EvaluationDLParams
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
def
write: MLWriter
- Definition Classes
- ParamsAndFeaturesWritable → DefaultParamsWritable → MLWritable
Inherited from ClassifierEncoder
Inherited from EvaluationDLParams
Inherited from ParamsAndFeaturesWritable
Inherited from HasFeatures
Inherited from AnnotatorApproach[MultiClassifierDLModel]
Inherited from CanBeLazy
Inherited from DefaultParamsWritable
Inherited from MLWritable
Inherited from HasOutputAnnotatorType
Inherited from HasOutputAnnotationCol
Inherited from HasInputAnnotationCols
Inherited from Estimator[MultiClassifierDLModel]
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.
Annotator types
Required input and expected output annotator types