trait ClassifierEncoder extends EvaluationDLParams
- Grouped
- Alphabetic
- By Inheritance
- ClassifierEncoder
- EvaluationDLParams
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Abstract Value Members
Concrete Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
$[T](param: Param[T]): T
- Attributes
- protected
- Definition Classes
- Params
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
val
batchSize: IntParam
Batch size (Default:
64
) -
def
buildDatasetWithLabels(dataset: Dataset[_], inputCols: String): (DataFrame, Array[String])
- Attributes
- protected
-
final
def
clear(param: Param[_]): ClassifierEncoder.this.type
- Definition Classes
- Params
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
val
configProtoBytes: IntArrayParam
ConfigProto from tensorflow, serialized into byte array.
ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()
-
def
copyValues[T <: Params](to: T, extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
final
def
defaultCopy[T <: Params](extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
val
enableOutputLogs: BooleanParam
Whether to output to annotators log folder (Default:
false
)Whether to output to annotators log folder (Default:
false
)- Definition Classes
- EvaluationDLParams
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
val
evaluationLogExtended: BooleanParam
Whether logs for validation to be extended (Default:
false
): it displays time and evaluation of each labelWhether logs for validation to be extended (Default:
false
): it displays time and evaluation of each label- Definition Classes
- EvaluationDLParams
-
def
explainParam(param: Param[_]): String
- Definition Classes
- Params
-
def
explainParams(): String
- Definition Classes
- Params
-
def
extractInputs(encoder: ClassifierDatasetEncoder, dataframe: DataFrame): (Array[Array[Float]], Array[String])
- Attributes
- protected
-
final
def
extractParamMap(): ParamMap
- Definition Classes
- Params
-
final
def
extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
def
getBatchSize: Int
Batch size (Default:
64
) -
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
getConfigProtoBytes: Option[Array[Byte]]
Tensorflow config Protobytes passed to the TF session
-
final
def
getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
def
getEnableOutputLogs: Boolean
Whether to output to annotators log folder (Default:
false
)Whether to output to annotators log folder (Default:
false
)- Definition Classes
- EvaluationDLParams
-
def
getLabelColumn: String
Column with label per each document
-
def
getLr: Float
Learning Rate (Default:
5e-3f
) -
def
getMaxEpochs: Int
Maximum number of epochs to train (Default:
10
) -
final
def
getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
-
def
getOutputLogsPath: String
Folder path to save training logs (Default:
""
)Folder path to save training logs (Default:
""
)- Definition Classes
- EvaluationDLParams
-
def
getParam(paramName: String): Param[Any]
- Definition Classes
- Params
-
def
getRandomSeed: Int
Random seed
-
def
getValidationSplit: Float
Choose the proportion of training dataset to be validated against the model on each Epoch (Default:
0.0f
).Choose the proportion of training dataset to be validated against the model on each Epoch (Default:
0.0f
). The value should be between 0.0 and 1.0 and by default it is 0.0 and off.- Definition Classes
- EvaluationDLParams
-
final
def
hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
-
def
hasParam(paramName: String): Boolean
- Definition Classes
- Params
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
isSet(param: Param[_]): Boolean
- Definition Classes
- Params
-
val
labelColumn: Param[String]
Column with label per each document
-
val
lr: FloatParam
Learning Rate (Default:
5e-3f
) -
val
maxEpochs: IntParam
Maximum number of epochs to train (Default:
10
) -
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
val
outputLogsPath: Param[String]
Folder path to save training logs (Default:
""
)Folder path to save training logs (Default:
""
)- Definition Classes
- EvaluationDLParams
-
lazy val
params: Array[Param[_]]
- Definition Classes
- Params
-
val
randomSeed: IntParam
Random seed for shuffling the dataset
-
final
def
set(paramPair: ParamPair[_]): ClassifierEncoder.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set(param: String, value: Any): ClassifierEncoder.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set[T](param: Param[T], value: T): ClassifierEncoder.this.type
- Definition Classes
- Params
-
def
setBatchSize(batch: Int): ClassifierEncoder.this.type
Batch size (Default:
64
) -
def
setConfigProtoBytes(bytes: Array[Int]): ClassifierEncoder.this.type
Tensorflow config Protobytes passed to the TF session
-
final
def
setDefault(paramPairs: ParamPair[_]*): ClassifierEncoder.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
setDefault[T](param: Param[T], value: T): ClassifierEncoder.this.type
- Attributes
- protected[org.apache.spark.ml]
- Definition Classes
- Params
-
def
setEnableOutputLogs(enableOutputLogs: Boolean): ClassifierEncoder.this.type
Whether to output to annotators log folder (Default:
false
)Whether to output to annotators log folder (Default:
false
)- Definition Classes
- EvaluationDLParams
-
def
setEvaluationLogExtended(evaluationLogExtended: Boolean): ClassifierEncoder.this.type
Whether logs for validation to be extended: it displays time and evaluation of each label.
Whether logs for validation to be extended: it displays time and evaluation of each label. Default is false.
- Definition Classes
- EvaluationDLParams
-
def
setLabelColumn(column: String): ClassifierEncoder.this.type
Column with label per each document
-
def
setLr(lr: Float): ClassifierEncoder.this.type
Learning Rate (Default:
5e-3f
) -
def
setMaxEpochs(epochs: Int): ClassifierEncoder.this.type
Maximum number of epochs to train (Default:
10
) -
def
setOutputLogsPath(path: String): ClassifierEncoder.this.type
Folder path to save training logs (Default:
""
)Folder path to save training logs (Default:
""
)- Definition Classes
- EvaluationDLParams
-
def
setRandomSeed(seed: Int): ClassifierEncoder.this.type
Random seed
-
def
setTestDataset(er: ExternalResource): ClassifierEncoder.this.type
ExternalResource to a parquet file of a test dataset.
ExternalResource to a parquet file of a test dataset. If set, it is used to calculate statistics on it during training.
When using an ExternalResource, only parquet files are accepted for this function.
The parquet file must be a dataframe that has the same columns as the model that is being trained. For example, if the model needs as input
DOCUMENT
,TOKEN
,WORD_EMBEDDINGS
(Features) andNAMED_ENTITY
(label) then these columns also need to be present while saving the dataframe. The pre-processing steps for the training dataframe should also be applied to the test dataframe.An example on how to create such a parquet file could be:
// assuming preProcessingPipeline val Array(train, test) = data.randomSplit(Array(0.8, 0.2)) preProcessingPipeline .fit(test) .transform(test) .write .mode("overwrite") .parquet("test_data") annotator.setTestDataset("test_data")
- Definition Classes
- EvaluationDLParams
-
def
setTestDataset(path: String, readAs: Format = ReadAs.SPARK, options: Map[String, String] = Map("format" -> "parquet")): ClassifierEncoder.this.type
Path to a parquet file of a test dataset.
Path to a parquet file of a test dataset. If set, it is used to calculate statistics on it during training.
The parquet file must be a dataframe that has the same columns as the model that is being trained. For example, if the model needs as input
DOCUMENT
,TOKEN
,WORD_EMBEDDINGS
(Features) andNAMED_ENTITY
(label) then these columns also need to be present while saving the dataframe. The pre-processing steps for the training dataframe should also be applied to the test dataframe.An example on how to create such a parquet file could be:
// assuming preProcessingPipeline val Array(train, test) = data.randomSplit(Array(0.8, 0.2)) preProcessingPipeline .fit(test) .transform(test) .write .mode("overwrite") .parquet("test_data") annotator.setTestDataset("test_data")
- Definition Classes
- EvaluationDLParams
-
def
setValidationSplit(validationSplit: Float): ClassifierEncoder.this.type
Choose the proportion of training dataset to be validated against the model on each Epoch (Default:
0.0f
).Choose the proportion of training dataset to be validated against the model on each Epoch (Default:
0.0f
). The value should be between 0.0 and 1.0 and by default it is 0.0 and off.- Definition Classes
- EvaluationDLParams
-
def
setVerbose(verbose: Level): ClassifierEncoder.this.type
Level of verbosity during training (Default:
Verbose.Silent.id
)Level of verbosity during training (Default:
Verbose.Silent.id
)- Definition Classes
- EvaluationDLParams
-
def
setVerbose(verbose: Int): ClassifierEncoder.this.type
Level of verbosity during training (Default:
Verbose.Silent.id
)Level of verbosity during training (Default:
Verbose.Silent.id
)- Definition Classes
- EvaluationDLParams
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
val
testDataset: ExternalResourceParam
Path to a parquet file of a test dataset.
Path to a parquet file of a test dataset. If set, it is used to calculate statistics on it during training.
- Definition Classes
- EvaluationDLParams
-
def
toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
-
val
validationSplit: FloatParam
Choose the proportion of training dataset to be validated against the model on each Epoch (Default:
0.0f
).Choose the proportion of training dataset to be validated against the model on each Epoch (Default:
0.0f
). The value should be between 0.0 and 1.0 and by default it is 0.0 and off.- Definition Classes
- EvaluationDLParams
-
val
verbose: IntParam
Level of verbosity during training (Default:
Verbose.Silent.id
)Level of verbosity during training (Default:
Verbose.Silent.id
)- Definition Classes
- EvaluationDLParams
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()