object SparkNLP

Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. SparkNLP
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. val MavenGpuSpark3: String
  5. val MavenSpark3: String
  6. val MavenSparkAarch64: String
  7. val MavenSparkSilicon: String
  8. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  9. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  10. val currentVersion: String
  11. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  12. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  13. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  14. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  15. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  16. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  17. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  18. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  19. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  20. def start(gpu: Boolean = false, apple_silicon: Boolean = false, aarch64: Boolean = false, memory: String = "16G", cache_folder: String = "", log_folder: String = "", cluster_tmp_dir: String = "", params: Map[String, String] = Map.empty): SparkSession

    Start SparkSession with Spark NLP

    Start SparkSession with Spark NLP

    gpu

    start Spark NLP with GPU

    apple_silicon

    start Spark NLP for Apple M1 & M2 systems

    aarch64

    start Spark NLP for Linux Aarch64 systems

    memory

    set driver memory for SparkSession

    cache_folder

    The location to download and extract pretrained Models and Pipelines (by default, it will be in the users home directory under cache_pretrained.)

    log_folder

    The location to use on a cluster for temporarily files such as unpacking indexes for WordEmbeddings. By default, this locations is the location of hadoop.tmp.dir set via Hadoop configuration for Apache Spark. NOTE: S3 is not supported and it must be local, HDFS, or DBFS.

    cluster_tmp_dir

    The location to save logs from annotators during training (By default, it will be in the users home directory under annotator_logs.)

    params

    Custom parameters to set for the Spark configuration (Default: Map.empty)

    returns

    SparkSession

  21. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  22. def toString(): String
    Definition Classes
    AnyRef → Any
  23. def version(): String
  24. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  25. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  26. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()

Inherited from AnyRef

Inherited from Any

Ungrouped