trait HasClassifierActivationProperties extends ParamsAndFeaturesWritable
- Grouped
- Alphabetic
- By Inheritance
- HasClassifierActivationProperties
- ParamsAndFeaturesWritable
- HasFeatures
- Params
- Serializable
- Serializable
- Identifiable
- DefaultParamsWritable
- MLWritable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Abstract Value Members
Concrete Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
$[T](param: Param[T]): T
- Attributes
- protected
- Definition Classes
- Params
-
def
$$[T](feature: StructFeature[T]): T
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
$$[K, V](feature: MapFeature[K, V]): Map[K, V]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
$$[T](feature: SetFeature[T]): Set[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
$$[T](feature: ArrayFeature[T]): Array[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
val
activation: Param[String]
Whether to enable caching DataFrames or RDDs during the training (Default depends on model).
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
final
def
clear(param: Param[_]): HasClassifierActivationProperties.this.type
- Definition Classes
- Params
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
def
copyValues[T <: Params](to: T, extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
final
def
defaultCopy[T <: Params](extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
explainParam(param: Param[_]): String
- Definition Classes
- Params
-
def
explainParams(): String
- Definition Classes
- Params
-
final
def
extractParamMap(): ParamMap
- Definition Classes
- Params
-
final
def
extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
-
val
features: ArrayBuffer[Feature[_, _, _]]
- Definition Classes
- HasFeatures
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
def
get[T](feature: StructFeature[T]): Option[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
get[K, V](feature: MapFeature[K, V]): Option[Map[K, V]]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
get[T](feature: SetFeature[T]): Option[Set[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
get[T](feature: ArrayFeature[T]): Option[Array[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
- def getActivation: String
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
final
def
getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
-
def
getParam(paramName: String): Param[Any]
- Definition Classes
- Params
-
final
def
hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
-
def
hasParam(paramName: String): Boolean
- Definition Classes
- Params
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
isSet(param: Param[_]): Boolean
- Definition Classes
- Params
-
val
multilabel: BooleanParam
Whether or not the result should be multi-class (the sum of all probabilities is 1.0) or multi-label (each label has a probability between 0.0 to 1.0).
Whether or not the result should be multi-class (the sum of all probabilities is 1.0) or multi-label (each label has a probability between 0.0 to 1.0). Default is False i.e. multi-class
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
onWrite(path: String, spark: SparkSession): Unit
- Attributes
- protected
- Definition Classes
- ParamsAndFeaturesWritable
-
lazy val
params: Array[Param[_]]
- Definition Classes
- Params
-
def
save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @Since( "1.6.0" ) @throws( ... )
-
def
set[T](feature: StructFeature[T], value: T): HasClassifierActivationProperties.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
set[K, V](feature: MapFeature[K, V], value: Map[K, V]): HasClassifierActivationProperties.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
set[T](feature: SetFeature[T], value: Set[T]): HasClassifierActivationProperties.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
set[T](feature: ArrayFeature[T], value: Array[T]): HasClassifierActivationProperties.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
set(paramPair: ParamPair[_]): HasClassifierActivationProperties.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set(param: String, value: Any): HasClassifierActivationProperties.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set[T](param: Param[T], value: T): HasClassifierActivationProperties.this.type
- Definition Classes
- Params
- def setActivation(value: String): HasClassifierActivationProperties.this.type
-
def
setDefault[T](feature: StructFeature[T], value: () ⇒ T): HasClassifierActivationProperties.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
setDefault[K, V](feature: MapFeature[K, V], value: () ⇒ Map[K, V]): HasClassifierActivationProperties.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
setDefault[T](feature: SetFeature[T], value: () ⇒ Set[T]): HasClassifierActivationProperties.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
setDefault[T](feature: ArrayFeature[T], value: () ⇒ Array[T]): HasClassifierActivationProperties.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
setDefault(paramPairs: ParamPair[_]*): HasClassifierActivationProperties.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
setDefault[T](param: Param[T], value: T): HasClassifierActivationProperties.this.type
- Attributes
- protected[org.apache.spark.ml]
- Definition Classes
- Params
-
def
setMultilabel(value: Boolean): HasClassifierActivationProperties.this.type
Set whether or not the result should be multi-class (the sum of all probabilities is 1.0) or multi-label (each label has a probability between 0.0 to 1.0).
Set whether or not the result should be multi-class (the sum of all probabilities is 1.0) or multi-label (each label has a probability between 0.0 to 1.0). Default is False i.e. multi-class
-
def
setThreshold(threshold: Float): HasClassifierActivationProperties.this.type
Choose the threshold to determine which logits are considered to be positive or negative.
Choose the threshold to determine which logits are considered to be positive or negative. (Default:
0.5f
). The value should be between 0.0 and 1.0. Changing the threshold value will affect the resulting labels and can be used to adjust the balance between precision and recall in the classification process. -
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
val
threshold: FloatParam
Choose the threshold to determine which logits are considered to be positive or negative.
Choose the threshold to determine which logits are considered to be positive or negative. (Default:
0.5f
). The value should be between 0.0 and 1.0. Changing the threshold value will affect the resulting labels and can be used to adjust the balance between precision and recall in the classification process. -
def
toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
def
write: MLWriter
- Definition Classes
- ParamsAndFeaturesWritable → DefaultParamsWritable → MLWritable