trait HasGeneratorProperties extends AnyRef
Parameters to configure beam search text generation.
- Self Type
- HasGeneratorProperties with ParamsAndFeaturesWritable
- Grouped
- Alphabetic
- By Inheritance
- HasGeneratorProperties
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
val
beamSize: IntParam
Beam size for the beam search algorithm (Default:
4
) -
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
val
doSample: BooleanParam
Whether or not to use sampling, use greedy decoding otherwise (Default:
false
) -
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
- def getBeamSize: Int
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
- def getDoSample: Boolean
- def getMaxOutputLength: Int
- def getMinOutputLength: Int
- def getNReturnSequences: Int
- def getNoRepeatNgramSize: Int
- def getRandomSeed: Option[Long]
- def getRepetitionPenalty: Double
- def getStopTokenIds: Array[Int]
- def getTask: Option[String]
- def getTemperature: Double
- def getTopK: Int
- def getTopP: Double
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
val
maxInputLength: IntParam
max length of the input sequence (Default:
0
) -
val
maxOutputLength: IntParam
Maximum length of the sequence to be generated (Default:
20
) -
val
minOutputLength: IntParam
Minimum length of the sequence to be generated (Default:
0
) -
val
nReturnSequences: IntParam
The number of sequences to return from the beam search.
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
val
noRepeatNgramSize: IntParam
If set to int >
0
, all ngrams of that size can only occur once (Default:0
) -
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
val
randomSeed: Option[Long]
Optional Random seed for the model.
Optional Random seed for the model. Needs to be of type
Int
. -
val
repetitionPenalty: DoubleParam
The parameter for repetition penalty (Default:
1.0
).The parameter for repetition penalty (Default:
1.0
).1.0
means no penalty. See this paper for more details. - def setBeamSize(beamNum: Int): HasGeneratorProperties.this
- def setDoSample(value: Boolean): HasGeneratorProperties.this
- def setMaxInputLength(value: Int): HasGeneratorProperties.this
- def setMaxOutputLength(value: Int): HasGeneratorProperties.this
- def setMinOutputLength(value: Int): HasGeneratorProperties.this
- def setNReturnSequences(beamNum: Int): HasGeneratorProperties.this
- def setNoRepeatNgramSize(value: Int): HasGeneratorProperties.this
- def setRandomSeed(value: Long): HasGeneratorProperties.this
- def setRepetitionPenalty(value: Double): HasGeneratorProperties.this
- def setStopTokenIds(value: Array[Int]): HasGeneratorProperties.this
- def setTask(value: String): HasGeneratorProperties.this
- def setTemperature(value: Double): HasGeneratorProperties.this
- def setTopK(value: Int): HasGeneratorProperties.this
- def setTopP(value: Double): HasGeneratorProperties.this
-
val
stopTokenIds: IntArrayParam
Stop tokens to terminate the generation
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
val
task: Param[String]
Set transformer task, e.g.
Set transformer task, e.g.
"summarize:"
(Default:""
). -
val
temperature: DoubleParam
The value used to module the next token probabilities (Default:
1.0
) -
def
toString(): String
- Definition Classes
- AnyRef → Any
-
val
topK: IntParam
The number of highest probability vocabulary tokens to keep for top-k-filtering (Default:
50
) -
val
topP: DoubleParam
If set to float <
1.0
, only the most probable tokens with probabilities that add up totopP
or higher are kept for generation (Default:1.0
) -
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()