class BertEmbeddings extends AnnotatorModel[BertEmbeddings] with HasBatchedAnnotate[BertEmbeddings] with WriteTensorflowModel with WriteOnnxModel with WriteOpenvinoModel with HasEmbeddingsProperties with HasStorageRef with HasCaseSensitiveProperties with HasEngine
Token-level embeddings using BERT. BERT (Bidirectional Encoder Representations from Transformers) provides dense vector representations for natural language by using a deep, pre-trained neural network with the Transformer architecture.
Pretrained models can be loaded with pretrained
of the companion object:
val embeddings = BertEmbeddings.pretrained() .setInputCols("token", "document") .setOutputCol("bert_embeddings")
The default model is "small_bert_L2_768"
, if no name is provided.
For available pretrained models please see the Models Hub.
For extended examples of usage, see the Examples and the BertEmbeddingsTestSpec. To see which models are compatible and how to import them see https://github.com/JohnSnowLabs/spark-nlp/discussions/5669.
Sources :
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
https://github.com/google-research/bert
Paper abstract
We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT model can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE score to 80.5% (7.7% point absolute improvement), MultiNLI accuracy to 86.7% (4.6% absolute improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5 point absolute improvement) and SQuAD v2.0 Test F1 to 83.1 (5.1 point absolute improvement).
Example
import spark.implicits._ import com.johnsnowlabs.nlp.base.DocumentAssembler import com.johnsnowlabs.nlp.annotators.Tokenizer import com.johnsnowlabs.nlp.embeddings.BertEmbeddings import com.johnsnowlabs.nlp.EmbeddingsFinisher import org.apache.spark.ml.Pipeline val documentAssembler = new DocumentAssembler() .setInputCol("text") .setOutputCol("document") val tokenizer = new Tokenizer() .setInputCols("document") .setOutputCol("token") val embeddings = BertEmbeddings.pretrained("small_bert_L2_128", "en") .setInputCols("token", "document") .setOutputCol("bert_embeddings") val embeddingsFinisher = new EmbeddingsFinisher() .setInputCols("bert_embeddings") .setOutputCols("finished_embeddings") .setOutputAsVector(true) val pipeline = new Pipeline().setStages(Array( documentAssembler, tokenizer, embeddings, embeddingsFinisher )) val data = Seq("This is a sentence.").toDF("text") val result = pipeline.fit(data).transform(data) result.selectExpr("explode(finished_embeddings) as result").show(5, 80) +--------------------------------------------------------------------------------+ | result| +--------------------------------------------------------------------------------+ |[-2.3497989177703857,0.480538547039032,-0.3238905668258667,-1.612930893898010...| |[-2.1357314586639404,0.32984697818756104,-0.6032363176345825,-1.6791689395904...| |[-1.8244884014129639,-0.27088963985443115,-1.059438943862915,-0.9817547798156...| |[-1.1648050546646118,-0.4725411534309387,-0.5938255786895752,-1.5780693292617...| |[-0.9125322699546814,0.4563939869403839,-0.3975459933280945,-1.81611204147338...| +--------------------------------------------------------------------------------+
- See also
BertSentenceEmbeddings for sentence-level embeddings
BertForTokenClassification For BertEmbeddings with a token classification layer on top
Annotators Main Page for a list of transformer based embeddings
- Grouped
- Alphabetic
- By Inheritance
- BertEmbeddings
- HasEngine
- HasCaseSensitiveProperties
- HasStorageRef
- HasEmbeddingsProperties
- HasProtectedParams
- WriteOpenvinoModel
- WriteOnnxModel
- WriteTensorflowModel
- HasBatchedAnnotate
- AnnotatorModel
- CanBeLazy
- RawAnnotator
- HasOutputAnnotationCol
- HasInputAnnotationCols
- HasOutputAnnotatorType
- ParamsAndFeaturesWritable
- HasFeatures
- DefaultParamsWritable
- MLWritable
- Model
- Transformer
- PipelineStage
- Logging
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Parameters
A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.
-
val
batchSize: IntParam
Size of every batch (Default depends on model).
Size of every batch (Default depends on model).
- Definition Classes
- HasBatchedAnnotate
-
val
caseSensitive: BooleanParam
Whether to ignore case in index lookups (Default depends on model)
Whether to ignore case in index lookups (Default depends on model)
- Definition Classes
- HasCaseSensitiveProperties
-
val
configProtoBytes: IntArrayParam
ConfigProto from tensorflow, serialized into byte array.
ConfigProto from tensorflow, serialized into byte array. Get with
config_proto.SerializeToString()
-
val
dimension: ProtectedParam[Int]
Number of embedding dimensions (Default depends on model)
Number of embedding dimensions (Default depends on model)
- Definition Classes
- HasEmbeddingsProperties
-
val
engine: Param[String]
This param is set internally once via loadSavedModel.
This param is set internally once via loadSavedModel. That's why there is no setter
- Definition Classes
- HasEngine
-
val
maxSentenceLength: IntParam
Max sentence length to process (Default:
128
) -
val
signatures: MapFeature[String, String]
It contains TF model signatures for the laded saved model
-
val
storageRef: Param[String]
Unique identifier for storage (Default:
this.uid
)Unique identifier for storage (Default:
this.uid
)- Definition Classes
- HasStorageRef
-
val
vocabulary: MapFeature[String, Int]
Vocabulary used to encode the words to ids with WordPieceEncoder
Annotator types
Required input and expected output annotator types
-
val
inputAnnotatorTypes: Array[String]
Input Annotator Types: DOCUMENT, TOKEN
Input Annotator Types: DOCUMENT, TOKEN
- Definition Classes
- BertEmbeddings → HasInputAnnotationCols
-
val
outputAnnotatorType: AnnotatorType
Output Annotator Types: WORD_EMBEDDINGS
Output Annotator Types: WORD_EMBEDDINGS
- Definition Classes
- BertEmbeddings → HasOutputAnnotatorType
Members
-
implicit
class
ProtectedParam[T] extends Param[T]
- Definition Classes
- HasProtectedParams
-
type
AnnotatorType = String
- Definition Classes
- HasOutputAnnotatorType
-
def
batchAnnotate(batchedAnnotations: Seq[Array[Annotation]]): Seq[Seq[Annotation]]
takes a document and annotations and produces new annotations of this annotator's annotation type
takes a document and annotations and produces new annotations of this annotator's annotation type
- batchedAnnotations
Annotations that correspond to inputAnnotationCols generated by previous annotators if any
- returns
any number of annotations processed for every input annotation. Not necessary one to one relationship
- Definition Classes
- BertEmbeddings → HasBatchedAnnotate
-
def
batchProcess(rows: Iterator[_]): Iterator[Row]
- Definition Classes
- HasBatchedAnnotate
-
final
def
clear(param: Param[_]): BertEmbeddings.this.type
- Definition Classes
- Params
-
def
copy(extra: ParamMap): BertEmbeddings
requirement for annotators copies
requirement for annotators copies
- Definition Classes
- RawAnnotator → Model → Transformer → PipelineStage → Params
-
def
createDatabaseConnection(database: Name): RocksDBConnection
- Definition Classes
- HasStorageRef
-
def
explainParam(param: Param[_]): String
- Definition Classes
- Params
-
def
explainParams(): String
- Definition Classes
- Params
-
final
def
extractParamMap(): ParamMap
- Definition Classes
- Params
-
final
def
extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
-
val
features: ArrayBuffer[Feature[_, _, _]]
- Definition Classes
- HasFeatures
-
final
def
get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
final
def
getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
def
getInputCols: Array[String]
- returns
input annotations columns currently used
- Definition Classes
- HasInputAnnotationCols
-
def
getLazyAnnotator: Boolean
- Definition Classes
- CanBeLazy
- def getModelIfNotSet: Bert
-
final
def
getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
-
final
def
getOutputCol: String
Gets annotation column name going to generate
Gets annotation column name going to generate
- Definition Classes
- HasOutputAnnotationCol
-
def
getParam(paramName: String): Param[Any]
- Definition Classes
- Params
-
def
getStorageRef: String
- Definition Classes
- HasStorageRef
-
final
def
hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
-
def
hasParam(paramName: String): Boolean
- Definition Classes
- Params
-
def
hasParent: Boolean
- Definition Classes
- Model
-
final
def
isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
-
final
def
isSet(param: Param[_]): Boolean
- Definition Classes
- Params
-
val
lazyAnnotator: BooleanParam
- Definition Classes
- CanBeLazy
-
def
onWrite(path: String, spark: SparkSession): Unit
- Definition Classes
- BertEmbeddings → ParamsAndFeaturesWritable
-
val
optionalInputAnnotatorTypes: Array[String]
- Definition Classes
- HasInputAnnotationCols
-
lazy val
params: Array[Param[_]]
- Definition Classes
- Params
-
var
parent: Estimator[BertEmbeddings]
- Definition Classes
- Model
-
def
save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @Since( "1.6.0" ) @throws( ... )
-
def
set[T](param: ProtectedParam[T], value: T): BertEmbeddings.this.type
Sets the value for a protected Param.
Sets the value for a protected Param.
If the parameter was already set, it will not be set again. Default values do not count as a set value and can be overridden.
- T
Type of the parameter
- param
Protected parameter to set
- value
Value for the parameter
- returns
This object
- Definition Classes
- HasProtectedParams
-
final
def
set[T](param: Param[T], value: T): BertEmbeddings.this.type
- Definition Classes
- Params
-
final
def
setInputCols(value: String*): BertEmbeddings.this.type
- Definition Classes
- HasInputAnnotationCols
-
def
setInputCols(value: Array[String]): BertEmbeddings.this.type
Overrides required annotators column if different than default
Overrides required annotators column if different than default
- Definition Classes
- HasInputAnnotationCols
-
def
setLazyAnnotator(value: Boolean): BertEmbeddings.this.type
- Definition Classes
- CanBeLazy
-
final
def
setOutputCol(value: String): BertEmbeddings.this.type
Overrides annotation column name when transforming
Overrides annotation column name when transforming
- Definition Classes
- HasOutputAnnotationCol
-
def
setParent(parent: Estimator[BertEmbeddings]): BertEmbeddings
- Definition Classes
- Model
-
def
setStorageRef(value: String): BertEmbeddings.this.type
- Definition Classes
- HasStorageRef
-
def
toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
- def tokenizeWithAlignment(tokens: Seq[TokenizedSentence]): Seq[WordpieceTokenizedSentence]
-
final
def
transform(dataset: Dataset[_]): DataFrame
Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content
Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content
- dataset
Dataset[Row]
- Definition Classes
- AnnotatorModel → Transformer
-
def
transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
- Definition Classes
- Transformer
- Annotations
- @Since( "2.0.0" )
-
def
transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
- Definition Classes
- Transformer
- Annotations
- @Since( "2.0.0" ) @varargs()
-
final
def
transformSchema(schema: StructType): StructType
requirement for pipeline transformation validation.
requirement for pipeline transformation validation. It is called on fit()
- Definition Classes
- RawAnnotator → PipelineStage
-
val
uid: String
- Definition Classes
- BertEmbeddings → Identifiable
-
def
validateStorageRef(dataset: Dataset[_], inputCols: Array[String], annotatorType: String): Unit
- Definition Classes
- HasStorageRef
-
def
write: MLWriter
- Definition Classes
- ParamsAndFeaturesWritable → DefaultParamsWritable → MLWritable
-
def
writeOnnxModel(path: String, spark: SparkSession, onnxWrapper: OnnxWrapper, suffix: String, fileName: String): Unit
- Definition Classes
- WriteOnnxModel
-
def
writeOnnxModels(path: String, spark: SparkSession, onnxWrappersWithNames: Seq[(OnnxWrapper, String)], suffix: String): Unit
- Definition Classes
- WriteOnnxModel
-
def
writeOpenvinoModel(path: String, spark: SparkSession, openvinoWrapper: OpenvinoWrapper, suffix: String, fileName: String): Unit
- Definition Classes
- WriteOpenvinoModel
-
def
writeOpenvinoModels(path: String, spark: SparkSession, ovWrappersWithNames: Seq[(OpenvinoWrapper, String)], suffix: String): Unit
- Definition Classes
- WriteOpenvinoModel
-
def
writeTensorflowHub(path: String, tfPath: String, spark: SparkSession, suffix: String = "_use"): Unit
- Definition Classes
- WriteTensorflowModel
-
def
writeTensorflowModel(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]] = None): Unit
- Definition Classes
- WriteTensorflowModel
-
def
writeTensorflowModelV2(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]] = None, savedSignatures: Option[Map[String, String]] = None): Unit
- Definition Classes
- WriteTensorflowModel
Parameter setters
- def sentenceEndTokenId: Int
- def sentenceStartTokenId: Int
-
def
setBatchSize(size: Int): BertEmbeddings.this.type
Size of every batch.
Size of every batch.
- Definition Classes
- HasBatchedAnnotate
-
def
setCaseSensitive(value: Boolean): BertEmbeddings.this.type
Whether to lowercase tokens or not
Whether to lowercase tokens or not
- Definition Classes
- BertEmbeddings → HasCaseSensitiveProperties
- def setConfigProtoBytes(bytes: Array[Int]): BertEmbeddings.this.type
-
def
setDimension(value: Int): BertEmbeddings.this.type
Set Embeddings dimensions for the BERT model Only possible to set this when the first time is saved dimension is not changeable, it comes from BERT config file
Set Embeddings dimensions for the BERT model Only possible to set this when the first time is saved dimension is not changeable, it comes from BERT config file
- Definition Classes
- BertEmbeddings → HasEmbeddingsProperties
- def setMaxSentenceLength(value: Int): BertEmbeddings.this.type
- def setModelIfNotSet(spark: SparkSession, tensorflowWrapper: Option[TensorflowWrapper], onnxWrapper: Option[OnnxWrapper], openvinoWrapper: Option[OpenvinoWrapper]): BertEmbeddings
- def setSignatures(value: Map[String, String]): BertEmbeddings.this.type
- def setVocabulary(value: Map[String, Int]): BertEmbeddings.this.type
Parameter getters
-
def
getBatchSize: Int
Size of every batch.
Size of every batch.
- Definition Classes
- HasBatchedAnnotate
-
def
getCaseSensitive: Boolean
- Definition Classes
- HasCaseSensitiveProperties
- def getConfigProtoBytes: Option[Array[Byte]]
-
def
getDimension: Int
- Definition Classes
- HasEmbeddingsProperties
-
def
getEngine: String
- Definition Classes
- HasEngine
- def getMaxSentenceLength: Int
- def getSignatures: Option[Map[String, String]]