class BartTransformer extends AnnotatorModel[BartTransformer] with HasBatchedAnnotate[BartTransformer] with ParamsAndFeaturesWritable with WriteTensorflowModel with WriteOnnxModel with HasEngine with HasGeneratorProperties
BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension Transformer
The Facebook BART (Bidirectional and Auto-Regressive Transformer) model is a state-of-the-art language generation model that was introduced by Facebook AI in 2019. It is based on the transformer architecture and is designed to handle a wide range of natural language processing tasks such as text generation, summarization, and machine translation.
BART is unique in that it is both bidirectional and auto-regressive, meaning that it can generate text both from left-to-right and from right-to-left. This allows it to capture contextual information from both past and future tokens in a sentence,resulting in more accurate and natural language generation.
The model was trained on a large corpus of text data using a combination of unsupervised and supervised learning techniques. It incorporates pretraining and fine-tuning phases, where the model is first trained on a large unlabeled corpus of text, and then fine-tuned on specific downstream tasks.
BART has achieved state-of-the-art performance on a wide range of NLP tasks, including summarization, question-answering, and language translation. Its ability to handle multiple tasks and its high performance on each of these tasks make it a versatile and valuable tool for natural language processing applications.
Pretrained models can be loaded with pretrained
of the companion object:
val bart = BartTransformer.pretrained() .setInputCols("document") .setOutputCol("generation")
The default model is "distilbart_xsum_12_6"
, if no name is provided. For available
pretrained models please see the Models Hub.
For extended examples of usage, see BartTestSpec.
References:
- BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension
- https://github.com/pytorch/fairseq
Paper Abstract:
We present BART, a denoising autoencoder for pretraining sequence-to-sequence models. BART is trained by (1) corrupting text with an arbitrary noising function, and (2) learning a model to reconstruct the original text. It uses a standard Tranformer-based neural machine translation architecture which, despite its simplicity, can be seen as generalizing BERT (due to the bidirectional encoder), GPT (with the left-to-right decoder), and other recent pretraining schemes. We evaluate a number of noising approaches, finding the best performance by both randomly shuffling the order of sentences and using a novel in-filling scheme, where spans of text are replaced with a single mask token. BART is particularly effective when fine tuned for text generation but also works well for comprehension tasks. It matches the performance of RoBERTa on GLUE and SQuAD, and achieves new stateof-the-art results on a range of abstractive dialogue, question answering, and summarization tasks, with gains of up to 3.5 ROUGE. BART also provides a 1.1 BLEU increase over a back-translation system for machine translation, with only target language pretraining. We also replicate other pretraining schemes within the BART framework, to understand their effect on end-task performance
Note:
This is a very computationally expensive module especially on larger sequence. The use of an accelerator such as GPU is recommended.
Example
import spark.implicits._ import com.johnsnowlabs.nlp.base.DocumentAssembler import com.johnsnowlabs.nlp.annotators.seq2seq.GPT2Transformer import org.apache.spark.ml.Pipeline val documentAssembler = new DocumentAssembler() .setInputCol("text") .setOutputCol("documents") val bart = BartTransformer.pretrained("distilbart_xsum_12_6") .setInputCols(Array("documents")) .setMinOutputLength(10) .setMaxOutputLength(30) .setDoSample(true) .setTopK(50) .setOutputCol("generation") val pipeline = new Pipeline().setStages(Array(documentAssembler, bart)) val data = Seq( "PG&E stated it scheduled the blackouts in response to forecasts for high winds " + "amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were " + "scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow." ).toDF("text") val result = pipeline.fit(data).transform(data) results.select("generation.result").show(truncate = false) +--------------------------------------------------------------+ |result | +--------------------------------------------------------------+ |[Nearly 800 thousand customers were affected by the shutoffs.]| +--------------------------------------------------------------+
- Grouped
- Alphabetic
- By Inheritance
- BartTransformer
- HasGeneratorProperties
- HasEngine
- WriteOnnxModel
- WriteTensorflowModel
- HasBatchedAnnotate
- AnnotatorModel
- CanBeLazy
- RawAnnotator
- HasOutputAnnotationCol
- HasInputAnnotationCols
- HasOutputAnnotatorType
- ParamsAndFeaturesWritable
- HasFeatures
- DefaultParamsWritable
- MLWritable
- Model
- Transformer
- PipelineStage
- Logging
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Parameters
A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.
-
val
batchSize: IntParam
Size of every batch (Default depends on model).
Size of every batch (Default depends on model).
- Definition Classes
- HasBatchedAnnotate
-
val
beamSize: IntParam
Beam size for the beam search algorithm (Default:
4
)Beam size for the beam search algorithm (Default:
4
)- Definition Classes
- HasGeneratorProperties
-
val
configProtoBytes: IntArrayParam
ConfigProto from tensorflow, serialized into byte array.
ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()
-
val
doSample: BooleanParam
Whether or not to use sampling, use greedy decoding otherwise (Default:
false
)Whether or not to use sampling, use greedy decoding otherwise (Default:
false
)- Definition Classes
- HasGeneratorProperties
-
val
engine: Param[String]
This param is set internally once via loadSavedModel.
This param is set internally once via loadSavedModel. That's why there is no setter
- Definition Classes
- HasEngine
-
var
ignoreTokenIds: IntArrayParam
A list of token ids which are ignored in the decoder 's output (Default:
Array()
) -
val
inputAnnotatorTypes: Array[AnnotatorType]
Input annotator type : DOCUMENT
Input annotator type : DOCUMENT
- Definition Classes
- BartTransformer → HasInputAnnotationCols
-
val
maxInputLength: IntParam
max length of the input sequence (Default:
0
)max length of the input sequence (Default:
0
)- Definition Classes
- HasGeneratorProperties
-
val
maxOutputLength: IntParam
Maximum length of the sequence to be generated (Default:
20
)Maximum length of the sequence to be generated (Default:
20
)- Definition Classes
- HasGeneratorProperties
-
val
merges: MapFeature[(String, String), Int]
Holding merges.txt coming from RoBERTa model
-
val
minOutputLength: IntParam
Minimum length of the sequence to be generated (Default:
0
)Minimum length of the sequence to be generated (Default:
0
)- Definition Classes
- HasGeneratorProperties
-
val
nReturnSequences: IntParam
The number of sequences to return from the beam search.
The number of sequences to return from the beam search.
- Definition Classes
- HasGeneratorProperties
-
val
noRepeatNgramSize: IntParam
If set to int >
0
, all ngrams of that size can only occur once (Default:0
)If set to int >
0
, all ngrams of that size can only occur once (Default:0
)- Definition Classes
- HasGeneratorProperties
-
val
outputAnnotatorType: String
Output annotator type : DOCUMENT
Output annotator type : DOCUMENT
- Definition Classes
- BartTransformer → HasOutputAnnotatorType
-
val
randomSeed: Option[Long]
Optional Random seed for the model.
Optional Random seed for the model. Needs to be of type
Int
.- Definition Classes
- HasGeneratorProperties
-
val
repetitionPenalty: DoubleParam
The parameter for repetition penalty (Default:
1.0
).The parameter for repetition penalty (Default:
1.0
).1.0
means no penalty. See this paper for more details.- Definition Classes
- HasGeneratorProperties
-
val
signatures: MapFeature[String, String]
It contains TF model signatures for the laded saved model
-
val
stopTokenIds: IntArrayParam
Stop tokens to terminate the generation
Stop tokens to terminate the generation
- Definition Classes
- HasGeneratorProperties
-
val
task: Param[String]
Set transformer task, e.g.
Set transformer task, e.g.
"summarize:"
(Default:""
).- Definition Classes
- HasGeneratorProperties
-
val
temperature: DoubleParam
The value used to module the next token probabilities (Default:
1.0
)The value used to module the next token probabilities (Default:
1.0
)- Definition Classes
- HasGeneratorProperties
-
val
topK: IntParam
The number of highest probability vocabulary tokens to keep for top-k-filtering (Default:
50
)The number of highest probability vocabulary tokens to keep for top-k-filtering (Default:
50
)- Definition Classes
- HasGeneratorProperties
-
val
topP: DoubleParam
If set to float <
1.0
, only the most probable tokens with probabilities that add up totopP
or higher are kept for generation (Default:1.0
)If set to float <
1.0
, only the most probable tokens with probabilities that add up totopP
or higher are kept for generation (Default:1.0
)- Definition Classes
- HasGeneratorProperties
-
val
useCache: BooleanParam
Cache internal state of the model to improve performance
-
val
vocabulary: MapFeature[String, Int]
Vocabulary used to encode the words to ids with bpeTokenizer.encode
Members
-
type
AnnotatorType = String
- Definition Classes
- HasOutputAnnotatorType
-
def
batchAnnotate(batchedAnnotations: Seq[Array[Annotation]]): Seq[Seq[Annotation]]
takes a document and annotations and produces new annotations of this annotator's annotation type
takes a document and annotations and produces new annotations of this annotator's annotation type
- batchedAnnotations
Annotations in batches that correspond to inputAnnotationCols generated by previous annotators if any
- returns
any number of annotations processed for every batch of input annotations. Not necessary one to one relationship IMPORTANT: !MUST! return sequences of equal lengths !! IMPORTANT: !MUST! return sentences that belong to the same original row !! (challenging)
- Definition Classes
- BartTransformer → HasBatchedAnnotate
-
def
batchProcess(rows: Iterator[_]): Iterator[Row]
- Definition Classes
- HasBatchedAnnotate
-
final
def
clear(param: Param[_]): BartTransformer.this.type
- Definition Classes
- Params
-
def
copy(extra: ParamMap): BartTransformer
requirement for annotators copies
requirement for annotators copies
- Definition Classes
- RawAnnotator → Model → Transformer → PipelineStage → Params
-
def
explainParam(param: Param[_]): String
- Definition Classes
- Params
-
def
explainParams(): String
- Definition Classes
- Params
-
final
def
extractParamMap(): ParamMap
- Definition Classes
- Params
-
final
def
extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
-
val
features: ArrayBuffer[Feature[_, _, _]]
- Definition Classes
- HasFeatures
-
final
def
get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
final
def
getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
def
getInputCols: Array[String]
- returns
input annotations columns currently used
- Definition Classes
- HasInputAnnotationCols
-
def
getLazyAnnotator: Boolean
- Definition Classes
- CanBeLazy
-
final
def
getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
-
final
def
getOutputCol: String
Gets annotation column name going to generate
Gets annotation column name going to generate
- Definition Classes
- HasOutputAnnotationCol
-
def
getParam(paramName: String): Param[Any]
- Definition Classes
- Params
- def getUseCache: Boolean
-
final
def
hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
-
def
hasParam(paramName: String): Boolean
- Definition Classes
- Params
-
def
hasParent: Boolean
- Definition Classes
- Model
-
final
def
isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
-
final
def
isSet(param: Param[_]): Boolean
- Definition Classes
- Params
-
val
lazyAnnotator: BooleanParam
- Definition Classes
- CanBeLazy
-
def
onWrite(path: String, spark: SparkSession): Unit
- Definition Classes
- BartTransformer → ParamsAndFeaturesWritable
-
val
optionalInputAnnotatorTypes: Array[String]
- Definition Classes
- HasInputAnnotationCols
-
lazy val
params: Array[Param[_]]
- Definition Classes
- Params
-
var
parent: Estimator[BartTransformer]
- Definition Classes
- Model
-
def
save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @Since( "1.6.0" ) @throws( ... )
-
final
def
set[T](param: Param[T], value: T): BartTransformer.this.type
- Definition Classes
- Params
-
final
def
setInputCols(value: String*): BartTransformer.this.type
- Definition Classes
- HasInputAnnotationCols
-
def
setInputCols(value: Array[String]): BartTransformer.this.type
Overrides required annotators column if different than default
Overrides required annotators column if different than default
- Definition Classes
- HasInputAnnotationCols
-
def
setLazyAnnotator(value: Boolean): BartTransformer.this.type
- Definition Classes
- CanBeLazy
-
def
setMaxInputLength(value: Int): BartTransformer.this.type
- Definition Classes
- HasGeneratorProperties
-
final
def
setOutputCol(value: String): BartTransformer.this.type
Overrides annotation column name when transforming
Overrides annotation column name when transforming
- Definition Classes
- HasOutputAnnotationCol
-
def
setParent(parent: Estimator[BartTransformer]): BartTransformer
- Definition Classes
- Model
-
def
toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
-
final
def
transform(dataset: Dataset[_]): DataFrame
Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content
Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content
- dataset
Dataset[Row]
- Definition Classes
- AnnotatorModel → Transformer
-
def
transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
- Definition Classes
- Transformer
- Annotations
- @Since( "2.0.0" )
-
def
transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
- Definition Classes
- Transformer
- Annotations
- @Since( "2.0.0" ) @varargs()
-
final
def
transformSchema(schema: StructType): StructType
requirement for pipeline transformation validation.
requirement for pipeline transformation validation. It is called on fit()
- Definition Classes
- RawAnnotator → PipelineStage
-
val
uid: String
- Definition Classes
- BartTransformer → Identifiable
-
def
write: MLWriter
- Definition Classes
- ParamsAndFeaturesWritable → DefaultParamsWritable → MLWritable
-
def
writeOnnxModel(path: String, spark: SparkSession, onnxWrapper: OnnxWrapper, suffix: String, fileName: String): Unit
- Definition Classes
- WriteOnnxModel
-
def
writeOnnxModels(path: String, spark: SparkSession, onnxWrappersWithNames: Seq[(OnnxWrapper, String)], suffix: String): Unit
- Definition Classes
- WriteOnnxModel
-
def
writeTensorflowHub(path: String, tfPath: String, spark: SparkSession, suffix: String = "_use"): Unit
- Definition Classes
- WriteTensorflowModel
-
def
writeTensorflowModel(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]] = None): Unit
- Definition Classes
- WriteTensorflowModel
-
def
writeTensorflowModelV2(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]] = None, savedSignatures: Option[Map[String, String]] = None): Unit
- Definition Classes
- WriteTensorflowModel
Parameter setters
-
def
setBatchSize(size: Int): BartTransformer.this.type
Size of every batch.
Size of every batch.
- Definition Classes
- HasBatchedAnnotate
-
def
setBeamSize(beamNum: Int): BartTransformer.this.type
- Definition Classes
- HasGeneratorProperties
- def setConfigProtoBytes(bytes: Array[Int]): BartTransformer.this.type
-
def
setDoSample(value: Boolean): BartTransformer.this.type
- Definition Classes
- HasGeneratorProperties
- def setIgnoreTokenIds(tokenIds: Array[Int]): BartTransformer.this.type
-
def
setMaxOutputLength(value: Int): BartTransformer.this.type
- Definition Classes
- HasGeneratorProperties
- def setMerges(value: Map[(String, String), Int]): BartTransformer.this.type
-
def
setMinOutputLength(value: Int): BartTransformer.this.type
- Definition Classes
- HasGeneratorProperties
- def setModelIfNotSet(spark: SparkSession, tfWrapper: Option[TensorflowWrapper], onnxWrappers: Option[EncoderDecoderWithoutPastWrappers], useCache: Boolean): BartTransformer.this.type
-
def
setNReturnSequences(beamNum: Int): BartTransformer.this.type
- Definition Classes
- HasGeneratorProperties
-
def
setNoRepeatNgramSize(value: Int): BartTransformer.this.type
- Definition Classes
- HasGeneratorProperties
-
def
setRandomSeed(value: Long): BartTransformer.this.type
- Definition Classes
- HasGeneratorProperties
-
def
setRepetitionPenalty(value: Double): BartTransformer.this.type
- Definition Classes
- HasGeneratorProperties
- def setSignatures(value: Map[String, String]): BartTransformer.this.type
-
def
setStopTokenIds(value: Array[Int]): BartTransformer.this.type
- Definition Classes
- HasGeneratorProperties
-
def
setTask(value: String): BartTransformer.this.type
- Definition Classes
- HasGeneratorProperties
-
def
setTemperature(value: Double): BartTransformer.this.type
- Definition Classes
- HasGeneratorProperties
-
def
setTopK(value: Int): BartTransformer.this.type
- Definition Classes
- HasGeneratorProperties
-
def
setTopP(value: Double): BartTransformer.this.type
- Definition Classes
- HasGeneratorProperties
- def setVocabulary(value: Map[String, Int]): BartTransformer.this.type
Parameter getters
-
def
getBatchSize: Int
Size of every batch.
Size of every batch.
- Definition Classes
- HasBatchedAnnotate
-
def
getBeamSize: Int
- Definition Classes
- HasGeneratorProperties
- def getConfigProtoBytes: Option[Array[Byte]]
-
def
getDoSample: Boolean
- Definition Classes
- HasGeneratorProperties
-
def
getEngine: String
- Definition Classes
- HasEngine
- def getIgnoreTokenIds: Array[Int]
-
def
getMaxOutputLength: Int
- Definition Classes
- HasGeneratorProperties
-
def
getMinOutputLength: Int
- Definition Classes
- HasGeneratorProperties
- def getModelIfNotSet: Bart
-
def
getNReturnSequences: Int
- Definition Classes
- HasGeneratorProperties
-
def
getNoRepeatNgramSize: Int
- Definition Classes
- HasGeneratorProperties
-
def
getRandomSeed: Option[Long]
- Definition Classes
- HasGeneratorProperties
-
def
getRepetitionPenalty: Double
- Definition Classes
- HasGeneratorProperties
- def getSignatures: Option[Map[String, String]]
-
def
getStopTokenIds: Array[Int]
- Definition Classes
- HasGeneratorProperties
-
def
getTask: Option[String]
- Definition Classes
- HasGeneratorProperties
-
def
getTemperature: Double
- Definition Classes
- HasGeneratorProperties
-
def
getTopK: Int
- Definition Classes
- HasGeneratorProperties
-
def
getTopP: Double
- Definition Classes
- HasGeneratorProperties